Difference between revisions of "Aufgaben:Exercise 2.11Z: Arithmetic Coding once again"
m (Guenter verschob die Seite Aufgabe 2.11: Nochmals Arithmetische Codierung nach Aufgabe 2.11Z: Nochmals Arithmetische Codierung) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID2473__Inf_A_2_12.png|right|Intervallbereiche | + | [[File:P_ID2473__Inf_A_2_12.png|right|frame|Vorgegebene Intervallbereiche]] |
− | Wir betrachten hier die arithmetische Codierung (AC). Alle notwendigen Informationen zu dieser Art von Entropiecodierung finden Sie in der [[Aufgaben:2.11_Arithmetische_Codierung|Aufgabe 2.11]]. | + | Wir betrachten hier die arithmetische Codierung ('''AC'''). Alle notwendigen Informationen zu dieser Art von Entropiecodierung finden Sie in der [[Aufgaben:2.11_Arithmetische_Codierung|Aufgabe 2.11]]. |
Auch die Grafik ist das Ergebnis von Aufgabe 2.11. Die für die aktuelle Aufgabe wichtigen Zahlenwerte für die Codierschritte 3 und 7 sind farblich hervorgehoben: | Auch die Grafik ist das Ergebnis von Aufgabe 2.11. Die für die aktuelle Aufgabe wichtigen Zahlenwerte für die Codierschritte 3 und 7 sind farblich hervorgehoben: | ||
− | * Das Intervall für $N= 3$ (Symbolfolge | + | * Das Intervall für $N= 3$ (Symbolfolge $\rm XXY$) beginnt bei $B_3 = 0.343$ und reicht bis zum Endwert $E_3 = 0.392$. |
− | * Das Intervall für $N= 7$ (Symbolfolge | + | * Das Intervall für $N= 7$ (Symbolfolge $\rm XXYXXXZ$) wird durch $B_7 = 0.3564456$ und $E_7 =0.359807$ begrenzt. |
− | |||
− | * Das Intervall $I$ wird bestimmt durch den Beginn $B$, das Ende $E$, die Intervallbreite ${\it \Delta} = E-B$ sowie die Intervallmitte $M = (B+E)/2$. | + | In dieser Aufgabe geht es nur um die Zuweisung von Binärfolgen zu den ausgewählten Intervallen. Vorgehensweise: |
− | * Das Intervall $I$ wird gekennzeichnet durch die Binärdarstellung (mit begrenzter Auflösung) eines beliebigen reellen Zahlenwertes $r \in I$ . Beispielsweise wählt man $r \approx M$. | + | |
+ | * Das Intervall $I$ wird bestimmt durch den Beginn $B$, das Ende $E$, die Intervallbreite ${\it \Delta} = E-B$ sowie die Intervallmitte $M = (B+E)/2$. | ||
+ | * Das Intervall $I$ wird gekennzeichnet durch die Binärdarstellung (mit begrenzter Auflösung) eines beliebigen reellen Zahlenwertes $r \in I$ . Beispielsweise wählt man $r \approx M$. | ||
* Die erforderliche Bitanzahl ergibt sich aus der Intervallbreite nach folgender Gleichung (die nach unten offenen Klammern bedeuten „nach oben runden”): | * Die erforderliche Bitanzahl ergibt sich aus der Intervallbreite nach folgender Gleichung (die nach unten offenen Klammern bedeuten „nach oben runden”): | ||
:$$N_{\rm Bit} = \left\lceil{\rm log_2} \hspace{0.15cm} 1/{\it \Delta} \right\rceil+1\hspace{0.05cm}. $$ | :$$N_{\rm Bit} = \left\lceil{\rm log_2} \hspace{0.15cm} 1/{\it \Delta} \right\rceil+1\hspace{0.05cm}. $$ | ||
Line 20: | Line 21: | ||
:$$r = 0 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+0 \cdot 2^{-4}+1 \cdot 2^{-5} = 0.28125 | :$$r = 0 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+0 \cdot 2^{-4}+1 \cdot 2^{-5} = 0.28125 | ||
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' |
Revision as of 13:12, 2 October 2018
Wir betrachten hier die arithmetische Codierung (AC). Alle notwendigen Informationen zu dieser Art von Entropiecodierung finden Sie in der Aufgabe 2.11.
Auch die Grafik ist das Ergebnis von Aufgabe 2.11. Die für die aktuelle Aufgabe wichtigen Zahlenwerte für die Codierschritte 3 und 7 sind farblich hervorgehoben:
- Das Intervall für $N= 3$ (Symbolfolge $\rm XXY$) beginnt bei $B_3 = 0.343$ und reicht bis zum Endwert $E_3 = 0.392$.
- Das Intervall für $N= 7$ (Symbolfolge $\rm XXYXXXZ$) wird durch $B_7 = 0.3564456$ und $E_7 =0.359807$ begrenzt.
In dieser Aufgabe geht es nur um die Zuweisung von Binärfolgen zu den ausgewählten Intervallen. Vorgehensweise:
- Das Intervall $I$ wird bestimmt durch den Beginn $B$, das Ende $E$, die Intervallbreite ${\it \Delta} = E-B$ sowie die Intervallmitte $M = (B+E)/2$.
- Das Intervall $I$ wird gekennzeichnet durch die Binärdarstellung (mit begrenzter Auflösung) eines beliebigen reellen Zahlenwertes $r \in I$ . Beispielsweise wählt man $r \approx M$.
- Die erforderliche Bitanzahl ergibt sich aus der Intervallbreite nach folgender Gleichung (die nach unten offenen Klammern bedeuten „nach oben runden”):
- $$N_{\rm Bit} = \left\lceil{\rm log_2} \hspace{0.15cm} 1/{\it \Delta} \right\rceil+1\hspace{0.05cm}. $$
Beispielsweise steht für $N_{\rm Bit} = 5$ der Binärcode 01001 für die folgende reellwertige Zahl r:
- $$r = 0 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+0 \cdot 2^{-4}+1 \cdot 2^{-5} = 0.28125 \hspace{0.05cm}. $$
Hinweise:
- Die Aufgabe gehört zum Kapitel Weitere Quellencodierverfahren.
- Insbesondere wird Bezug genommen auf die Seite Arithmetische Codierung.
- Weitere Informationen zum Thema finden Sie auch in diesem WIKIPEDIA-Artikel
Fragebogen
Musterlösung
- $$N_{\rm Bit} = {\rm log_2} \hspace{0.15cm} \left\lceil \frac{1}{0.049}\right\rceil+1\hspace{0.15cm}\underline{= 6} \hspace{0.05cm}.$$
(2) Das ausgewählte Intervall ergibt sich zu I = [0.343, 0.392). Die Mitte liegt bei M3 = 0.3675. Zur Bestimmung des arithmetischen Codes versuchen wir, die Intervallmitte durch eine Binärdarstellung möglichst gut zu erreichen. Da uns gerade kein entsprechendes Tool zur Lösung dieser Aufgabe zur Verfügung steht, gehen wir von folgenden Nebenrechnungen aus:
- H4 = 2–2 + 2–4 = 0.3125 ⇒ gehört nicht zum Intervall I.
- H5 = H4 + 2–5 = 0.34375 ∈ I ⇒ Binärdarstellung: 0.01011 ⇒ Code: 01011.
- H6 = H5 + 2–6 = 0.359375 ∈ I ⇒ Binärdarstellung: 0.010111 ⇒ Code: 010111.
- H7 = H6 + 2–7 = 0.3671875 ∈ I ⇒ Binärdarstellung: 0.0101111 ⇒ Code: 0101111.
- H12 = H7 + 2–12 = 0.3674316406 ∈ I ⇒ binär: 0.010111100001 ⇒ Code: 010111100001.
Der entsprechende 6 Bit–Code lautet somit AC = 010111 ⇒ Richtig ist der Lösungsvorschlag 2.
(3) Hier ergibt sich mit dem Beginn B7 = 0.3564456 und dem Ende E7 = 0.359807 die Intervallbreite Δ7 = 0.0033614 und damit
- $$N_{\rm Bit} = \left\lceil {\rm log_2} \hspace{0.15cm} \frac{1}{0.0033614} \right\rceil + 1\hspace{0.15cm} = \left\lceil {\rm ld} \hspace{0.15cm} 297.5 \right\rceil + 1\hspace{0.15cm} \underline{= 11} \hspace{0.05cm}.$$
(4) Die Binärdarstellung des Codes 01011100001 ergibt
- $$2^{-2}+ 2^{-4}+ 2^{-5}+ 2^{-6}+ 2^{-11} = 0.3598632813 > E_7 \hspace{0.05cm}.$$
Richtig ist also NEIN. Wegen
- $$2^{-2}+ 2^{-4}+ 2^{-5}+ 2^{-7}+ 2^{-8}+ 2^{-9}+ 2^{-11} =0.3579101563 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} B_7 \le 0.3579101563 < E_7$$
ist der gültige arithmetische Code gleich 01011011101.
(5) Alle Aussagen sind richtig. Siehe auch:
- Bodden, E.; Clasen, M.; Kneis, J.: Algebraische Kodierung. Proseminar, Lehrstuhl für Informatik IV, RWTH Aachen, 2002.