Difference between revisions of "Aufgaben:Exercise 5.4: Comparison of Rectangular and Hanning Window"

From LNTwww
m (Text replacement - "Signal_Representation/Spektralanalyse" to "Signal_Representation/Spectrum_Analysis")
m (Text replacement - "Signaldarstellung/Spektralanalyse" to "Signal_Representation/Spectrum_Analysis")
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Spektralanalyse
+
{{quiz-Header|Buchseite=Signal_Representation/Spectrum_Analysis
 
}}
 
}}
  

Revision as of 14:33, 1 September 2020

Beispiele für die Spektralanalyse

Gegeben sei der prinzipielle Zeitverlauf eines periodischen Signals:

$$x(t) = A_1 \cdot \cos (2 \pi \cdot f_1 \cdot t) + A_2 \cdot \cos (2 \pi \cdot f_2 \cdot t) \hspace{0.05cm}.$$

Unbekannt und damit zu schätzen sind dessen Parameter  $A_1$,  $f_1$,  $A_2$  und  $f_2$.

Nach Gewichtung des Signals mit der Fensterfunktion  $w(t)$  wird das Produkt  $y(t) = x(t) \cdot w(t)$  einer  Diskreten Fouriertransformation  (DFT) mit den Parametern  $N = 512$  und  $T_{\rm P}$  unterworfen. Die Zeitdauer  $T_{\rm P}$  des zu analysierenden Signalausschnitts kann vom Benutzer beliebig eingestellt werden.

Für die Fensterung stehen zwei Funktionen zur Verfügung, die für  $|t| > T_{\rm P}/2$  jeweils Null sind:

  • Das  Rechteckfenster:
$${w} (\nu) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}, \\ \end{array}$$
$$W(f) ={1}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot {f}/{f_{\rm A}})\hspace{0.05cm},$$
  • das  Hanning–Fenster:
$${w} (\nu) = \left\{ \begin{array}{c} 0.5 + 0.5 \cdot \cos (2 \pi \cdot {\nu}/{N}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}, \\ \end{array}$$
$$W(f) ={0.5}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f}{f_{\rm A}})+ {0.25}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f-f_{\rm A}}{f_{\rm A}})+ {0.5}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$

$W(f)$  ist hierbei die Fouriertransformierte der zeitkontinuierlichen Fensterfunktion  $w(t)$, während  $w(ν)$  die zeitdiskrete Gewichtungsfunktion angibt.

In der Aufgabe wird auf verschiedene Spektralfunktionen  $Y(f)$  Bezug genommen, zum Beispiel auf

$$Y_{\rm A}(f) = 1\, {\rm V}\cdot {\rm \delta} (f \pm 1\,\,{\rm kHz})+ 0.5\,\, {\rm V}\cdot {\rm \delta} (f \pm 1.125\,\,{\rm kHz}) \hspace{0.05cm}.$$

In der obigen Grafik sind zwei weitere Spektralfunktionen  $Y_{\rm B}(f)$  und  $Y_{\rm C}(f)$  abgebildet, die sich ergeben, wenn ein  $1 \ \text{kHz}$–Signal  mittels DFT analysiert wird und der DFT–Parameter  $T_{\rm P} = 8.5 \ \text{ms}$  ungünstig gewählt ist.

  • Für eines der Bilder ist das Rechteckfenster zugrunde gelegt, für das andere das Hanning–Fenster.
  • Nicht angegeben wird, welche Grafik zu welchem Fenster gehört.





Hinweise:

  • Die Aufgabe gehört zum Kapitel  Spektralanalyse.
  • Beachten Sie, dass die Frequenzauflösung  $f_{\rm A}$  gleich dem Kehrwert des einstellbaren Parameters  $T_{\rm P}$  ist.


Fragebogen

1

Welche der folgenden Aussagen treffen mit Sicherheit zu, wenn die DFT das Ausgangsspektrum  $Y_{\rm A}(f)$  anzeigt?

Zur Gewichtung wurde das Rechteckfenster verwendet.
Zur Gewichtung wurde das Hanning–Fenster verwendet.
Es wurde der DFT–Parameter  $T_{\rm P} = 4\ \text{ms}$  verwendet.
Das DFT–Spektrum $Y_{\rm A}(f)$ ist identisch mit dem tatsächlichen Spektrum $X(f)$.

2

Wie lautet  $Y(f)$  bei Verwendung des Hanning–Fensters und  $T_{\rm P} = 8 \ \text{ms}$, wenn das Eingangsspektrum  $X(f) = Y_{\rm A}(f)$  anliegt?
Geben Sie die Gewichte der Diraclinien bei  $f_1= 1\ \text{kHz}$  und  $f_2 = 1.125\ \text{kHz}$  an.

$G(f_1 = 1.000 \ \text{kHz})\ = \ $

 $\text{V}$
$G(f_2 = 1.125 \ \text{kHz})\ = \ $

 $\text{V}$

3

Wir betrachten das  $1\ \text{kHz}$–Cosinussignal  $x(t)$. Welches Spektrum -  $Y_{\rm B}(f)$  oder  $Y_{\rm C}(f)$  – ergibt sich mit dem Rechteck– bzw. dem Hanning–Fenster, wenn der DFT-Parameter  $T_{\rm P} = 8.5 \ \text{ms}$  ungünstig gewählt ist?

$Y_{\rm B}(f)$ ergibt sich bei Rechteckfensterung.
$Y_{\rm B}(f)$ ergibt sich mit dem Hanning-Fenster.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 4:

  • Bei Verwendung des Hanning–Fensters müssten selbst dann drei Diracfunktionen zu erkennen sein, wenn  $x(t)$  nur eine Frequenz beinhaltet   ⇒   es wurde das Rechteckfenster verwendet.
  • Mit  $T_{\rm P} = 4 \ \text{ms}$  ergibt sich für die Frequenzauflösung  $f_{\rm A}= 1/T_{\rm P} = 0.25 \ \text{kHz}$. Damit liegt die Frequenz  $f_2$  nicht im vorgegebenen Raster und  $Y(f)$  würde sich aus sehr vielen Diraclinien zusammensetzen. Das heißt:   die dritte Aussage ist falsch.
$\text{Beispielsignal 1}$  zur Spektralanalyse
  • Wie aus der Grafik hervorgeht, hat  $x(t)$  die Periodendauer  $T_{\rm 0} = 8 \ \text{ms}$. Wählt man den DFT–Parameter gleich  $T_{\rm P} = 4 \ \text{ms}$  (oder ein ganzzahliges Vielfaches davon), so stimmt die periodische Fortsetzung  ${\rm P}\{ x(t)\} $  im Intervall  $|t| \leq T_{\rm P}/2$  mit  $x(t)$  überein, so dass sich die Gewichtungsfunktion  $w(t)$  nicht störend auswirkt:  
  • Das DFT–Spektrum  $Y(f)$  stimmt somit mit dem tatsächlichen Spektrum überein.


(2)  Wegen $T_{\rm 0} = 8 \ \text{ms}$  setzt sich das Hanning–Spektrum  $W(f)$ 

  • aus drei Diracfunktionen bei positiven Frequenzen
  • und drei dazu achsensymmetrischen Diracs bei negativen Frequenzen


zusammen. Für die positiven Frequenzen lautet die Spektralfunktion:

$$W(f) =0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f-f_{\rm A})+ 0.25\cdot {\rm \delta}(f+f_{\rm A})\hspace{0.05cm}.$$

Das Ausgangsspektrum ergibt sich aus der Faltung zwischen  $X(f)$  und  $W(f)$. Bei positiven Frequenzen ergeben sich nun vier Diracs mit folgenden Gewichten:

$\text{Beispielsignal 2}$  zur Spektralanalyse
$$\begin{align*} G(f = 0.875\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 = 0.250\, {\rm V}, \\ G(f = f_1 = 1.000\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.5 + 0.5\, {\rm V}\cdot 0.25 \hspace{0.15 cm}\underline{ = 0.625\, {\rm V}}, \\ G(f = f_2 = 1.125\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 + 0.5\, {\rm V}\cdot 0.5 \hspace{0.15 cm}\underline{= 0.500\, {\rm V}}, \\ G(f = 1.250\,{\rm kHz}) & = 0.5\, {\rm V}\cdot 0.25 = 0.125\, {\rm V} \hspace{0.05cm}.\end{align*}$$

Die Grafik zeigt die Abschwächung der Ränder durch die Gewichtungsfunktion  $w(t)$  des Hanning–Fensters.


(3)  Richtig ist der zweite Lösungsvorschlag:

  • Das Rechteck–Fenster liefert dann ein sehr stark verfälschtes Ergebnis, wenn die Fensterbreite  $T_{\rm P}$  (wie hier) nicht an die Frequenz des Cosinussignals angepasst ist.
  • In diesem Fall ist das Hanning–Fenster besser geeignet.