Difference between revisions of "Aufgaben:Exercise 5.4Z: On the Hanning Window"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1168__Sig_Z_5_4.png|250px|right|frame|Charakterisierung des Hanning-Fensters]]
+
[[File:P_ID1168__Sig_Z_5_4.png|250px|right|frame|Characterisation of the Hanning window]]
  
In dieser Aufgabe sollen wichtige Eigenschaften des häufig verwendeten Hanning–Fensters hergeleitet werden. Die zeitkontinuierliche Darstellung im Intervall von  $-T_{\rm P}/2$  bis  $+T_{\rm P}/2$  lautet hier wie folgt:
+
In this task, important properties of the frequently used Hanning window are to be derived. The continuous-time representation in the interval from  $-T_{\rm P}/2$  to  $+T_{\rm P}/2$  is here as follows:
 
:$$w(t)= {\rm cos}^2(\pi \cdot
 
:$$w(t)= {\rm cos}^2(\pi \cdot
 
{t}/{T_{\rm P}})=  0.5\cdot \big(1 + {\rm cos}(2\pi \cdot
 
{t}/{T_{\rm P}})=  0.5\cdot \big(1 + {\rm cos}(2\pi \cdot
 
{t}/{T_{\rm P}}) \big )
 
{t}/{T_{\rm P}}) \big )
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Außerhalb des symmetrischen Zeitbereichs der Dauer  $T_{\rm P}$  ist $w (t) \equiv 0$.
+
Outside the symmetric time domain of duration  $T_{\rm P}$  ist $w (t) \equiv 0$.
  
Die obere Grafik zeigt die zeitdiskrete Darstellung  $w(\nu) = w({\nu}  \cdot T_{\rm A})$, wobei  $T_{\rm A}$  um den Faktor  $N = 32$  kleiner ist als  $T_{\rm P}$. Der Definitionsbereich der diskreten Zeitvariablen  $ν$  reicht von  $-16$  bis  $+15$.
+
The upper graph shows the discrete-time representation  $w(\nu) = w({\nu}  \cdot T_{\rm A})$, where  $T_{\rm A}$  is smaller than   $T_{\rm P}$ by a factor  $N = 32$ . The definition range of the discrete time variable  $ν$  extends from  $-16$  to  $+15$.
  
In der unteren Grafik ist die Fouriertransformierte  $W(f)$  der zeitkontinuierlichen Fensterfunktion  $w(t)$  logarithmisch dargestellt. Die Abszisse ist hierbei auf  $f_{\rm A} = 1/T_{\rm P}$  normiert ist. Man erkennt:
+
In the lower graph, the Fourier transform  $W(f)$  of the continuous-time window function  $w(t)$  is shown logarithmically. The abscissa is normalised to  $f_{\rm A} = 1/T_{\rm P}$ . One can see:
*Die äquidistanten Werte  $W({\mu}  \cdot f_{\rm A})$  sind Null mit Ausnahme von  $μ = 0$  und  $μ = ±1$.  
+
*The equidistant values  $W({\mu}  \cdot f_{\rm A})$  are zero except for  $μ = 0$  and  $μ = ±1$.  
*Die Hauptkeule erstreckt sich somit auf den Frequenzbereich  $|f| ≤ 2 · f_{\rm A}$.  
+
*The main lobe thus extends to the frequency range  $|f| ≤ 2 · f_{\rm A}$.  
*$W(f)$  ist außerhalb der Hauptkeule betragsmäßig für  $f = ±2.5 · f_{\rm A}$  am größten.  
+
*$W(f)$  is largest in magnitude outside the main lobe for  $f = ±2.5 · f_{\rm A}$ ..  
*Somit gilt hier für den minimalen Abstand zwischen Haupt– und Seitenkeulen:
+
*Thus, the minimum distance between the main and side lobes applies here:
  
 
:$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm}
 
:$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm}
Line 30: Line 30:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Spectrum_Analysis|Spektralanalyse]].
+
*This task belongs to the chapter  [[Signal_Representation/Spectrum_Analysis|Spectral Analysis]].
*Beachten Sie, dass die Frequenzauflösung  $f_{\rm A}$  gleich dem Kehrwert des einstellbaren Parameters  $T_{\rm P}$  ist.  
+
*Note that the frequency resolution  $f_{\rm A}$  is equal to the reciprocal of the adjustable parameter  $T_{\rm P}$ .
 
   
 
   
  
Line 38: Line 38:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Geben Sie die zeitdiskreten Koeffizienten&nbsp; $w(ν)$&nbsp; des Hanning–Fensters analytisch an. <br>Welche Zahlenwerte ergeben sich für&nbsp; $ν = 0$,&nbsp; $ν = 1$&nbsp; und&nbsp; $ν =  -\hspace{0.05cm}8$?
+
{Give the discrete-time coefficients&nbsp; $w(ν)$&nbsp; of the Hanning window analytically. <br>What are the numerical values for&nbsp; $ν = 0$,&nbsp; $ν = 1$&nbsp; and&nbsp; $ν =  -\hspace{0.05cm}8$?
 
|type="{}"}
 
|type="{}"}
 
$w(ν = 0) \hspace{0.37cm} = \ $ { 1 1% }  
 
$w(ν = 0) \hspace{0.37cm} = \ $ { 1 1% }  
Line 48: Line 48:
 
$w(ν =  -8) \hspace{0.03cm} = \ $ { 0.5 1% }  
 
$w(ν =  -8) \hspace{0.03cm} = \ $ { 0.5 1% }  
  
{Berechnen Sie die Spektralfunktion&nbsp; $W(f)$&nbsp; allgemein. Welche der folgenden Aussagen sind zutreffend??
+
{Calculate the spectral function&nbsp; $W(f)$&nbsp; in general. Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- $W(f)$&nbsp; liefert für spezielle Frequenzwerte komplexe Ergebnisse.
+
- $W(f)$&nbsp; yields complex results for special frequency values.
+ $W(f)$&nbsp; ist bezüglich&nbsp; $f$&nbsp; gerade, das heißt, es gilt stets&nbsp; $W(-f) = W(+f)$.
+
+ $W(f)$&nbsp; is even with respect to&nbsp; $f$&nbsp;, i.e.&nbsp; $W(-f) = W(+f)$.
+ Der Spektralwert&nbsp; $W(f = 0)$&nbsp; ist gleich&nbsp; $0.5/f_{\rm A}$&nbsp; und somit reell.
+
+ The spectral value&nbsp; $W(f = 0)$&nbsp; is equal to&nbsp; $0.5/f_{\rm A}$&nbsp; and thus real.
  
{Wie groß sind&nbsp; $W(f = ±f_{\rm A})$&nbsp; und die auf&nbsp; $f_{\rm A}$&nbsp; normierte $\text{6 dB}$–Bandbreite?
+
{What are&nbsp; $W(f = ±f_{\rm A})$&nbsp; and the $\text{6 dB}$bandwidth normalised to &nbsp; $f_{\rm A}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$W(±f_{\rm A})  \hspace{0.15cm} = \ $ { 0.25 1% } $\ \cdot \ 1/f_{\rm A}$
 
$W(±f_{\rm A})  \hspace{0.15cm} = \ $ { 0.25 1% } $\ \cdot \ 1/f_{\rm A}$
 
$B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A}  \hspace{0.2cm} = \ $ { 2 1% }  
 
$B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A}  \hspace{0.2cm} = \ $ { 2 1% }  
 
 
{Wie groß ist der minimale Abstand zwischen Hauptkeule und Seitenkeule.
+
{What is the minimum distance between the main lobe and the side lobe.
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm H/S} \ = \ $ { 32.3 1% } $\ \rm dB$
 
$A_{\rm H/S} \ = \ $ { 32.3 1% } $\ \rm dB$
Line 66: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Nach trigonometrischer Umformung ergibt sich für die zeitkontinuierliche Fensterfunktion:
+
'''(1)'''&nbsp; After trigonometric transformation, the result for the continuous-time window function is:
 
:$$w(t) = {\rm cos}^2(\pi \cdot
 
:$$w(t) = {\rm cos}^2(\pi \cdot
 
{t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm
 
{t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm
 
cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.$$
 
cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.$$
*Nach Zeitdiskretisierung mit&nbsp; $ν = t/T_{\rm A}$&nbsp; und&nbsp; $T_{\rm P}/T_{\rm A} = N = 32$&nbsp; erhält man für das zeitdiskrete Fenster:
+
*After time discretisation with&nbsp; $ν = t/T_{\rm A}$&nbsp; and&nbsp; $T_{\rm P}/T_{\rm A} = N = 32$&nbsp; , one obtains for the discrete-time window:
 
:$$w(\nu)  =  w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm
 
:$$w(\nu)  =  w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm
 
cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm}
 
cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm}
Line 83: Line 83:
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(2)'''&nbsp; The correct <u>solutions are 2 and 3:</u>:
*Die periodische Fortsetzung von&nbsp; $w(t)$&nbsp; entsprechend der Periodendauer&nbsp; $T_{\rm P}$&nbsp; liefert ein (periodisches) Signal mit einem Gleich– und einem Cosinusanteil.  
+
*The periodic continuation of&nbsp; $w(t)$&nbsp; corresponding to the period&nbsp; $T_{\rm P}$&nbsp; yields a (periodic) signal with a DC and a cosine component.
*Daraus folgt mit&nbsp; $f_{\rm A} = 1/T_{\rm P}$:
+
*From this follows with &nbsp; $f_{\rm A} = 1/T_{\rm P}$:
 
:$${\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm
 
:$${\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm
 
cos}(2\pi \cdot f_{\rm A} \cdot t)
 
cos}(2\pi \cdot f_{\rm A} \cdot t)
Line 91: Line 91:
 
\hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm
 
\hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm
 
\delta}(f \pm f_{\rm A}))\hspace{0.05cm}.$$
 
\delta}(f \pm f_{\rm A}))\hspace{0.05cm}.$$
*Das zeitbegrenzte Signal&nbsp; $w(t)$&nbsp; ergibt sich aus&nbsp; ${\rm P}\{w(t)\}$&nbsp; durch Multiplikation mit einem Rechteck der Amplitude&nbsp; $1$&nbsp; und der Dauer&nbsp; $T_{\rm P}$.  
+
*The time-limited signal&nbsp; $w(t)$&nbsp; is obtained from&nbsp; ${\rm P}\{w(t)\}$&nbsp; by multiplication with a rectangle of amplitude&nbsp; $1$&nbsp; and duration&nbsp; $T_{\rm P}$.  
*Dessen Spektrum&nbsp; $W(f)$&nbsp; erhält man somit aus der Faltung der obigen Spektralfunktion mit der Funktion&nbsp; $T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A})$:
+
*Its spectrum&nbsp; $W(f)$&nbsp; is thus obtained from the convolution of the above spectral function with the function&nbsp; $T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A})$:
 
:$$w(t)
 
:$$w(t)
 
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,
 
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,
Line 99: Line 99:
 
\frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm
 
\frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm
 
si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$
 
si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$
*Diese Spektralfunktion ist gerade und für alle Frequenzen&nbsp; $f$&nbsp; auch reell. Der Spektralwert bei der Frequenz&nbsp; $f = 0$&nbsp; ergibt die Fensterfläche:
+
*This spectral function is even and also real for all frequencies&nbsp; $f$&nbsp;. The spectral value at frequency&nbsp; $f = 0$&nbsp; gives the window area:
 
:$$W(f=0) =
 
:$$W(f=0) =
 
\frac{0.5}{f_{\rm A}}=
 
\frac{0.5}{f_{\rm A}}=
Line 107: Line 107:
  
  
'''(3)'''&nbsp; Aus dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; folgt auch:
+
'''(3)'''&nbsp; From the result of sub-task&nbsp; '''(2)'''&nbsp; it also follows:
 
:$$W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.$$  
 
:$$W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.$$  
*Aufgrund des monotonen Verlaufs im Bereich&nbsp; $|f| < f_{\rm A}$&nbsp; ist die Betragsfunktion&nbsp; $|W(f)|$&nbsp; genau bei&nbsp; $± f_{\rm A}$&nbsp; zum ersten Mal auf die Hälfte des Maximums abgefallen.  
+
*Due to the monotonic course in the range&nbsp; $|f| < f_{\rm A}$&nbsp;, the magnitude function&nbsp; $|W(f)|$&nbsp; has dropped to half of the maximum for the first time exactly at&nbsp; $± f_{\rm A}$&nbsp;.
*Damit gilt&nbsp; $B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}$.
+
*Thus,&nbsp; $B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}$.
  
  
  
'''(4)'''&nbsp; Der größte Spektralbetrag außerhalb der Hauptkeule tritt bei&nbsp; $f = ±2.5 f_{\rm A}$&nbsp; auf. Mit dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; gilt:
+
'''(4)'''&nbsp; The largest spectral amount outside the main lobe occurs at&nbsp; $f = ±2.5 f_{\rm A}$&nbsp;. With the result of subtask&nbsp; '''(2)'''&nbsp; holds:
 
:$$W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi )
 
:$$W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi )
 
  +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )=  \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.$$
 
  +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )=  \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.$$
*Damit erhält man für den minimalen Abstand zwischen Hauptkeule und Seitenkeulen:
+
*This gives the minimum distance between the main lobe and the side lobes:
 
:$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm}
 
:$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm}
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm}
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm}

Revision as of 20:42, 22 March 2021

Characterisation of the Hanning window

In this task, important properties of the frequently used Hanning window are to be derived. The continuous-time representation in the interval from  $-T_{\rm P}/2$  to  $+T_{\rm P}/2$  is here as follows:

$$w(t)= {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}})= 0.5\cdot \big(1 + {\rm cos}(2\pi \cdot {t}/{T_{\rm P}}) \big ) \hspace{0.05cm}.$$

Outside the symmetric time domain of duration  $T_{\rm P}$  ist $w (t) \equiv 0$.

The upper graph shows the discrete-time representation  $w(\nu) = w({\nu} \cdot T_{\rm A})$, where  $T_{\rm A}$  is smaller than   $T_{\rm P}$ by a factor  $N = 32$ . The definition range of the discrete time variable  $ν$  extends from  $-16$  to  $+15$.

In the lower graph, the Fourier transform  $W(f)$  of the continuous-time window function  $w(t)$  is shown logarithmically. The abscissa is normalised to  $f_{\rm A} = 1/T_{\rm P}$ . One can see:

  • The equidistant values  $W({\mu} \cdot f_{\rm A})$  are zero except for  $μ = 0$  and  $μ = ±1$.
  • The main lobe thus extends to the frequency range  $|f| ≤ 2 · f_{\rm A}$.
  • $W(f)$  is largest in magnitude outside the main lobe for  $f = ±2.5 · f_{\rm A}$ ..
  • Thus, the minimum distance between the main and side lobes applies here:
$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.$$





Hints:

  • This task belongs to the chapter  Spectral Analysis.
  • Note that the frequency resolution  $f_{\rm A}$  is equal to the reciprocal of the adjustable parameter  $T_{\rm P}$ .



Questions

1

Give the discrete-time coefficients  $w(ν)$  of the Hanning window analytically.
What are the numerical values for  $ν = 0$,  $ν = 1$  and  $ν = -\hspace{0.05cm}8$?

$w(ν = 0) \hspace{0.37cm} = \ $

$w(ν = 1) \hspace{0.37cm} = \ $

$w(ν = -8) \hspace{0.03cm} = \ $

2

Calculate the spectral function  $W(f)$  in general. Which of the following statements are correct?

$W(f)$  yields complex results for special frequency values.
$W(f)$  is even with respect to  $f$ , i.e.  $W(-f) = W(+f)$.
The spectral value  $W(f = 0)$  is equal to  $0.5/f_{\rm A}$  and thus real.

3

What are  $W(f = ±f_{\rm A})$  and the $\text{6 dB}$bandwidth normalised to   $f_{\rm A}$ ?

$W(±f_{\rm A}) \hspace{0.15cm} = \ $

$\ \cdot \ 1/f_{\rm A}$
$B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \hspace{0.2cm} = \ $

4

What is the minimum distance between the main lobe and the side lobe.

$A_{\rm H/S} \ = \ $

$\ \rm dB$


Solution

(1)  After trigonometric transformation, the result for the continuous-time window function is:

$$w(t) = {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.$$
  • After time discretisation with  $ν = t/T_{\rm A}$  and  $T_{\rm P}/T_{\rm A} = N = 32$  , one obtains for the discrete-time window:
$$w(\nu) = w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm} \Rightarrow \hspace{0.3cm}w(\nu = 0) \hspace{0.15 cm}\underline{= 1},$$
$$w(\nu = 1) = 0.5+ 0.5\cdot {\rm cos}( \frac{\pi}{16})\hspace{0.15 cm}\underline{ = 0.99}, $$
$$w(\nu = -8)=0.5+ 0.5\cdot {\rm cos}( \frac{-\pi}{2}) \hspace{0.15 cm}\underline{= 0.5}\hspace{0.05cm}.$$


(2)  The correct solutions are 2 and 3::

  • The periodic continuation of  $w(t)$  corresponding to the period  $T_{\rm P}$  yields a (periodic) signal with a DC and a cosine component.
  • From this follows with   $f_{\rm A} = 1/T_{\rm P}$:
$${\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm cos}(2\pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f \pm f_{\rm A}))\hspace{0.05cm}.$$
  • The time-limited signal  $w(t)$  is obtained from  ${\rm P}\{w(t)\}$  by multiplication with a rectangle of amplitude  $1$  and duration  $T_{\rm P}$.
  • Its spectrum  $W(f)$  is thus obtained from the convolution of the above spectral function with the function  $T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A})$:
$$w(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, W(f) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}( \frac{\pi f}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$
  • This spectral function is even and also real for all frequencies  $f$ . The spectral value at frequency  $f = 0$  gives the window area:
$$W(f=0) = \frac{0.5}{f_{\rm A}}= \int_{-\infty}^{+\infty}w(t)\hspace{0.05cm}{\rm d}t\hspace{0.05cm}.$$


(3)  From the result of sub-task  (2)  it also follows:

$$W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.$$
  • Due to the monotonic course in the range  $|f| < f_{\rm A}$ , the magnitude function  $|W(f)|$  has dropped to half of the maximum for the first time exactly at  $± f_{\rm A}$ .
  • Thus,  $B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}$.


(4)  The largest spectral amount outside the main lobe occurs at  $f = ±2.5 f_{\rm A}$ . With the result of subtask  (2)  holds:

$$W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi ) +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )= \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.$$
  • This gives the minimum distance between the main lobe and the side lobes:
$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{0.5}{0.0121}\hspace{0.15 cm}\underline{\approx 32.3\,\,{\rm dB}}\hspace{0.05cm}.$$