Difference between revisions of "Aufgaben:Exercise 1.1: Dual Slope Loss Model"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(20 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Mobile Kommunikation/Distanzabhängige Dämpfung und Abschattung
+
{{quiz-Header|Buchseite=Mobile_Communications/Distance_Dependent_Attenuation_and_Shading
 
}}
 
}}
  
[[File:EN_Mob_A1_1.png|right|frame|Path loss in $\rm dB$ vs. distance]]
+
[[File:EN_Mob_A1_1.png|right|frame|Dual-slope path loss diagram]]
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP):
+
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram.  This simple model is characterized by two linear sections separated by the so-called breakpoint  $\rm (BP)$. The variable name "$V$" stands for "Verlust", which is the German word for "loss":
* For  $d \le d_{\rm BP}$  and the exponent   $\gamma_0$ we have:
+
* For  $d \le d_{\rm BP}$  and the exponent   $\gamma_0$  we have:
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$
+
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$
  
* For  $d > d_{\rm BP}$  we must apply the path loss exponent  $\gamma_1$  where  $\gamma_1 > \gamma_0$ :  
+
* For  $d > d_{\rm BP}$  we must apply the path loss exponent  $\gamma_1$  where  $\gamma_1 > \gamma_0$:  
$$V_{\rm P}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$
+
:$$V_{\rm S}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$
 
   
 
   
 
In these equations, the variables are:  
 
In these equations, the variables are:  
Line 16: Line 16:
  
 
The graph applies to the model parameters
 
The graph applies to the model parameters
$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}
+
:$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}
 
  V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm}
 
  V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}
Line 24: Line 24:
  
 
The second curve is the profile  $\rm B$  given by the following equation:
 
The second curve is the profile  $\rm B$  given by the following equation:
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right )  
+
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right )  
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$
  
 
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  $d$  according to the following equation:
 
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  $d$  according to the following equation:
:$$P_{\rm E}(d) =  \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm zus}}{K_{\rm P}(d)}
+
:$$P_{\rm E}(d) =  \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm tot}}{V_{\rm S}(d)}
  \hspace{0.05cm},\hspace{0.2cm}K_{\rm P}(d) = 10^{V_{\rm P}(d)/10}  
+
  \hspace{0.05cm},\hspace{0.2cm}V_{\rm S}(d) = 10^{V_{\rm S}(d)/10}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Here, all parameters are in natural units (not in dB). The transmit power is assumed to be  $P_{\rm S} = 5 \ \rm W$ . The other quantities have the following meanings and values:
+
Here, all parameters are in natural units (not in dB).  The transmit power is assumed to be  $P_{\rm S} = 5 \ \rm W$ .  The other quantities have the following meanings and values:
 
* $10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB$  (gain of the transmit antenna),
 
* $10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB$  (gain of the transmit antenna),
 
* $10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB$  (gain of receiving antenna – so actually a loss),
 
* $10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB$  (gain of receiving antenna – so actually a loss),
* $10 \cdot \lg \ V_{\rm zus} = 4 \ \ \rm dB$  (loss through feeds).
+
* $10 \cdot \lg \ V_{\rm tot} = 4 \ \ \rm dB$  (loss through feeds).
  
  
Line 43: Line 43:
  
 
''Notes:''  
 
''Notes:''  
*This task belongs to the chapter  [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distanzabhängige Dämpfung und Abschattung]].
+
*This task belongs to the chapter  [[Mobile_Communications/Distance_dependent_attenuation_and_shading|Distance dependent attenuation and shading]].
 
*If the profile  $\rm B$  were
 
*If the profile  $\rm B$  were
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right )  
+
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right )  
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
 
  + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
:then profile  $\rm A$  and profile  $\rm B$  for  $d ≥ d_{\rm BP}$  would be identical
+
:then profile  $\rm A$  and profile  $\rm B$  would be identical  for  $d ≥ d_{\rm BP}$.
*In this case, however, profile  $\rm B$  would be above profile  $\rm A$  for   $(d < d_{\rm BP})$  , suggesting clearly too good conditions. For example,   $d = d_0 = 1 \ \ \rm m$  with the given numerical values gives a result that is   $40 \ \ \rm dB$  too good:
+
*In this case, however, profile  $\rm B$  would be above profile  $\rm A$  for   $d < d_{\rm BP}$, suggesting clearly too good conditions.  
$$V_{\rm P}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right )
+
*For example,   $d = d_0 = 1 \ \ \rm m$  with the given numerical values gives a result that is   $40 \ \ \rm dB$  too good:
 +
:$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right )
 
  = -30\,{\rm dB} \hspace{0.05cm}. $$
 
  = -30\,{\rm dB} \hspace{0.05cm}. $$
 
   
 
   
Line 55: Line 56:
  
  
===Questionnaire===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
 
{How large is the path loss $($in &nbsp;$\rm dB)$&nbsp; after&nbsp; $d= 100 \ \rm m$&nbsp; according to profile &nbsp;$\rm A$?
 
{How large is the path loss $($in &nbsp;$\rm dB)$&nbsp; after&nbsp; $d= 100 \ \rm m$&nbsp; according to profile &nbsp;$\rm A$?
 
|type="{}"}
 
|type="{}"}
$V_{\rm P}(d = 100 \ \rm m) \ = \ $ { 50 3% } $\ \rm dB$
+
$V_{\rm S}(d = 100 \ \rm m) \ = \ $ { 50 3% } $\ \rm dB$
  
 
{How large is the path loss $($in &nbsp;$\rm dB)$&nbsp; after&nbsp; $d= 100 \ \rm m$&nbsp; according to profile &nbsp;$\rm B$?
 
{How large is the path loss $($in &nbsp;$\rm dB)$&nbsp; after&nbsp; $d= 100 \ \rm m$&nbsp; according to profile &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
$V_{\rm P}(d = 100 \ \rm m) \ = \ $ { 56 3% } $\ \rm dB$
+
$V_{\rm S}(d = 100 \ \rm m) \ = \ $ { 56 3% } $\ \rm dB$
  
{What is the receive power after&nbsp; $100 \ \ \rm m$&nbsp; with both profiles?
+
{What is the received power after&nbsp; $100 \ \ \rm m$&nbsp; with both profiles?
 
|type="{}"}
 
|type="{}"}
 
Profile $\text{A:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.5 3% } $\ \ \rm mW$
 
Profile $\text{A:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.5 3% } $\ \ \rm mW$
 
Profile $\text{B:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.125 3% } $\ \ \rm mW$
 
Profile $\text{B:}  \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $ { 0.125 3% } $\ \ \rm mW$
  
{How big is the deviation&nbsp; $ΔV_{\rm P}$&nbsp; between profile &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$&nbsp; at&nbsp; $d = 50 \ \rm m$?
+
{How big is the deviation&nbsp; $ΔV_{\rm S}$&nbsp; between profile &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$&nbsp; at&nbsp; $d = 50 \ \rm m$?
 
|type="{}"}
 
|type="{}"}
 
$ΔV_{\rm P}(d = 50 \ \rm m) \ = \ $ { 3.5 3% } $\ \rm dB$
 
$ΔV_{\rm P}(d = 50 \ \rm m) \ = \ $ { 3.5 3% } $\ \rm dB$
  
{How big is the deviation&nbsp; $ΔV_{\rm P}$&nbsp; between profile &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$&nbsp; at&nbsp; $d = 200 \ \rm m$?
+
{How big is the deviation&nbsp; $ΔV_{\rm S}$&nbsp; between profile &nbsp;$\rm A$&nbsp; and &nbsp;$\rm B$&nbsp; at&nbsp; $d = 200 \ \rm m$?
 
|type="{}"}
 
|type="{}"}
 
$ΔV_{\rm P}(d = 200 \ \rm m)\ = \ $ { 3.5 3% } $\ \rm dB$
 
$ΔV_{\rm P}(d = 200 \ \rm m)\ = \ $ { 3.5 3% } $\ \rm dB$
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; You can see directly from the graphic that the profile '''(A)''' with the two linear sections at the breakpoint $(d = 100 \ \rm m)$ gives the following result:
+
'''(1)'''&nbsp; You can see directly from the graphic that the profile&nbsp; $\rm (A)$&nbsp; with the two linear sections at the breakpoint&nbsp; $(d = 100 \ \rm m)$&nbsp; gives the following result:
$$V_{\rm P}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}}  \hspace{0.05cm}.$$
+
:$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}}  \hspace{0.05cm}.$$
  
  
  
'''(2)'''&nbsp; With the profile <b>(B)</b> on the other hand, using $V_0 = 10 \ \rm dB$, $\gamma_0 = 2$ and $\gamma_1 = 4$:
+
'''(2)'''&nbsp; With the profile&nbsp; $\rm (B)$&nbsp; on the other hand, using&nbsp; $V_0 = 10 \ \rm dB$,&nbsp; $\gamma_0 = 2$&nbsp; and&nbsp; $\gamma_1 = 4$:
$$V_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2)  
+
:$$V_{\rm S}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2)  
 
   \hspace{0.15cm} \underline{\approx 56\,{\rm dB}}  \hspace{0.05cm}.$$
 
   \hspace{0.15cm} \underline{\approx 56\,{\rm dB}}  \hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; The antenna gains from the transmitter $(+17 \ \rm dB)$ and receiver $(-3 \ \rm dB)$ and the internal losses of the base station $(+4 \ \rm dB)$ can be combined to
+
'''(3)'''&nbsp; The antenna gains from the transmitter&nbsp; $(+17 \ \rm dB)$&nbsp; and receiver&nbsp; $(-3 \ \rm dB)$&nbsp; and the internal losses of the base station&nbsp; $(+4 \ \rm dB)$&nbsp; can be combined to
$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm zus} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB}
+
:$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*For the profile '''(A)''' the following path loss occurred:
+
*For the profile&nbsp; $\rm (A)$&nbsp; the following path loss occurred:
$$V_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$
+
:$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$
  
:This gives you for the received power after $d = 100\ \rm m$:
+
:This gives you for the received power after&nbsp; $d = 100\ \rm m$:
$$P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}}  \hspace{0.05cm}.$$
+
:$$P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}}  \hspace{0.05cm}.$$
  
*For profile '''(B)''' the received power is about $4$ times smaller:
+
*For profile&nbsp; $\rm (B)$&nbsp; the received power is about&nbsp; $4$&nbsp; times smaller:
 
:$$P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}}  \hspace{0.05cm}.$$
 
:$$P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}}  \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Below the breakpoint $(d < 100 \ \rm m)$, the deviation is determined by the last summand of profile '''(B)''':
+
'''(4)'''&nbsp; Below the breakpoint&nbsp; $(d < 100 \ \rm m)$, the deviation is determined by the last summand of profile&nbsp; $\rm (B)$:
$${\rm \delta}V_{\rm P}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm}
+
:$${\rm \Delta}V_{\rm S}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm}
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
  
  
  
'''(5)'''&nbsp; Here the profile '''(A)''' with $V_{\rm BP} = 50 \ \rm dB$ gives:
+
'''(5)'''&nbsp; Here the profile&nbsp; $\rm (A)$&nbsp; with&nbsp; $V_{\rm BP} = 50 \ \rm dB$&nbsp; gives:
$$V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm}
+
:$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm}
 
  {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$
 
  {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$
  
*On the other hand, the profile '''(B)''' leads to the result:
+
*On the other hand, the profile&nbsp; $\rm (B)$&nbsp; leads to the result:
$$V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200)
+
:$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200)
 
  + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB}
 
  + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB}
 
  \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$
 
  \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$
$$\Rightarrow \hspace{0.3cm} {\rm \delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm}
+
:$$\Rightarrow \hspace{0.3cm} {\rm \Delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm}
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
 
  \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
  
*You can see that $\Delta V_{\rm P}$ is almost symmetrical to $d = d_{\rm BP}$ if you plot the distance $d$ logarithmically as in the given graph.
+
*You can see that&nbsp; $\Delta V_{\rm S}$&nbsp; is almost symmetrical to&nbsp; $d = d_{\rm BP}$&nbsp; if you plot the distance&nbsp; $d$&nbsp; logarithmically as in the given graph.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^1.1 Distance-dependent attenuation^]]
+
[[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]]
 +
[[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]]

Latest revision as of 13:37, 23 March 2021

Dual-slope path loss diagram

To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram.  This simple model is characterized by two linear sections separated by the so-called breakpoint  $\rm (BP)$. The variable name "$V$" stands for "Verlust", which is the German word for "loss":

  • For  $d \le d_{\rm BP}$  and the exponent   $\gamma_0$  we have:
$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_0})\hspace{0.05cm}.$$
  • For  $d > d_{\rm BP}$  we must apply the path loss exponent  $\gamma_1$  where  $\gamma_1 > \gamma_0$:
$$V_{\rm S}(d) = V_{\rm BP} + \gamma_1 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} ({d}/{d_{\rm BP}})\hspace{0.05cm}.$$

In these equations, the variables are:

  • $V_0$  is the path loss (in dB) at  $d_0$  (normalization distance).
  • $V_{\rm BP}$  is the path loss (in dB) at  $d=d_{\rm BP}$  ("Breakpoint").


The graph applies to the model parameters

$$d_0 = 1\,{\rm m}\hspace{0.05cm},\hspace{0.2cm}d_{\rm BP} = 100\,{\rm m}\hspace{0.05cm},\hspace{0.2cm} V_0 = 10\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}\gamma_0 = 2 \hspace{0.05cm},\hspace{0.2cm}\gamma_1 = 4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} V_{\rm BP} = 50\,{\rm dB}\hspace{0.05cm}.$$

In the questions, this piece-wise defined profile is called  $\rm A$.

The second curve is the profile  $\rm B$  given by the following equation:

$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )\hspace{0.05cm}.$$

With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  $d$  according to the following equation:

$$P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm tot}}{V_{\rm S}(d)} \hspace{0.05cm},\hspace{0.2cm}V_{\rm S}(d) = 10^{V_{\rm S}(d)/10} \hspace{0.05cm}.$$

Here, all parameters are in natural units (not in dB).  The transmit power is assumed to be  $P_{\rm S} = 5 \ \rm W$ .  The other quantities have the following meanings and values:

  • $10 \cdot \lg \ G_{\rm S} = 17 \ \rm dB$  (gain of the transmit antenna),
  • $10 \cdot \lg \ G_{\rm E} = -3 \ \ \rm dB$  (gain of receiving antenna – so actually a loss),
  • $10 \cdot \lg \ V_{\rm tot} = 4 \ \ \rm dB$  (loss through feeds).




Notes:

$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.15cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right )$$
then profile  $\rm A$  and profile  $\rm B$  would be identical for  $d ≥ d_{\rm BP}$.
  • In this case, however, profile  $\rm B$  would be above profile  $\rm A$  for   $d < d_{\rm BP}$, suggesting clearly too good conditions.
  • For example,   $d = d_0 = 1 \ \ \rm m$  with the given numerical values gives a result that is   $40 \ \ \rm dB$  too good:
$$V_{\rm S}(d) = V_{\rm 0} + \gamma_0 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ( {d}/{d_0} \right ) + (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({d}/{d_{\rm BP}} \right ) =10\,{\rm dB} + 2 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left ({1}/{100} \right ) = -30\,{\rm dB} \hspace{0.05cm}. $$



Questions

1

How large is the path loss $($in  $\rm dB)$  after  $d= 100 \ \rm m$  according to profile  $\rm A$?

$V_{\rm S}(d = 100 \ \rm m) \ = \ $

$\ \rm dB$

2

How large is the path loss $($in  $\rm dB)$  after  $d= 100 \ \rm m$  according to profile  $\rm B$?

$V_{\rm S}(d = 100 \ \rm m) \ = \ $

$\ \rm dB$

3

What is the received power after  $100 \ \ \rm m$  with both profiles?

Profile $\text{A:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $

$\ \ \rm mW$
Profile $\text{B:} \hspace{0.2cm} P_{\rm E}(d = 100 \ \rm m) \ = \ $

$\ \ \rm mW$

4

How big is the deviation  $ΔV_{\rm S}$  between profile  $\rm A$  and  $\rm B$  at  $d = 50 \ \rm m$?

$ΔV_{\rm P}(d = 50 \ \rm m) \ = \ $

$\ \rm dB$

5

How big is the deviation  $ΔV_{\rm S}$  between profile  $\rm A$  and  $\rm B$  at  $d = 200 \ \rm m$?

$ΔV_{\rm P}(d = 200 \ \rm m)\ = \ $

$\ \rm dB$


Solution

(1)  You can see directly from the graphic that the profile  $\rm (A)$  with the two linear sections at the breakpoint  $(d = 100 \ \rm m)$  gives the following result:

$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.$$


(2)  With the profile  $\rm (B)$  on the other hand, using  $V_0 = 10 \ \rm dB$,  $\gamma_0 = 2$  and  $\gamma_1 = 4$:

$$V_{\rm S}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.$$


(3)  The antenna gains from the transmitter  $(+17 \ \rm dB)$  and receiver  $(-3 \ \rm dB)$  and the internal losses of the base station  $(+4 \ \rm dB)$  can be combined to

$$10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm tot} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.$$
  • For the profile  $\rm (A)$  the following path loss occurred:
$$V_{\rm S}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.$$
This gives you for the received power after  $d = 100\ \rm m$:
$$P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.$$
  • For profile  $\rm (B)$  the received power is about  $4$  times smaller:
$$P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.$$


(4)  Below the breakpoint  $(d < 100 \ \rm m)$, the deviation is determined by the last summand of profile  $\rm (B)$:

$${\rm \Delta}V_{\rm S}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$


(5)  Here the profile  $\rm (A)$  with  $V_{\rm BP} = 50 \ \rm dB$  gives:

$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.$$
  • On the other hand, the profile  $\rm (B)$  leads to the result:
$$V_{\rm S}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}}$$
$$\Rightarrow \hspace{0.3cm} {\rm \Delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.$$
  • You can see that  $\Delta V_{\rm S}$  is almost symmetrical to  $d = d_{\rm BP}$  if you plot the distance  $d$  logarithmically as in the given graph.