Difference between revisions of "Aufgaben:Exercise 1.1Z: Simple Path Loss Model"
m (Javier verschob die Seite Exercises:Exercise 1.1Z: Simple Path Loss Model nach Exercise 1.1Z: Simple Path Loss Model) |
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises") |
||
(30 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/Distance_Dependent_Attenuation_and_Shading |
}} | }} | ||
− | [[ | + | [[file:EN_Mob_Z1_1.png|right|frame|Simplest path loss diagram]] |
− | + | Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations: | |
− | :$$V_{\rm P}(d) = | + | :$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$ |
:$$V_{\rm 0} = \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$ | :$$V_{\rm 0} = \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$ | ||
− | + | The graphic shows the path loss $V_{\rm P}(d)$ in $\rm dB$. The abscissa $d$ is also displayed logarithmically. | |
− | In | + | In the above equation, the following parameters are used: |
− | * | + | * the distance $d$ of transmitter and receiver, |
− | * | + | * the reference distance $d_0 = 1 \ \rm m$, |
− | * | + | * the path loss exponent $\gamma$, |
− | * | + | * the wavelength $\lambda$ of the electromagnetic wave. |
− | + | Two scenarios are shown $\rm (A)$ and $\rm (B)$ with the same path loss at distance $d_0 = 1 \ \rm m$: | |
:$$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB} \hspace{0.05cm}.$$ | :$$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB} \hspace{0.05cm}.$$ | ||
− | + | One of these two scenarios describes the so-called <i>free-space attenuation</i>, characterized by the path loss exponent $\gamma = 2$. However, the equation for the free-space attenuation only applies in the <i>far-field</i>, i.e. when the distance $d$ between transmitter and receiver is greater than the <i>Fraunhofer distance</i>, | |
:$$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$ | :$$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$ | ||
− | + | Here, $D$ is the largest physical dimension of the transmitting antenna. With an $\lambda/2$–antenna, the Fraunhofer distance has a simple expression: | |
:$$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$ | :$$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$ | ||
Line 30: | Line 30: | ||
− | '' | + | ''Notes:'' |
− | * | + | * This task belongs to the chapter [[Mobile_Communications/Distance_dependent_attenuation_and_shading|Distance dependent attenuation and shading]]. |
− | * | + | * The speed of light is $c = 3 \cdot 10^8 \ {\rm m/s}$. |
Line 38: | Line 38: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which path loss exponents apply to the scenarios $\rm (A)$ and $\rm (B)$? |
|type="{}"} | |type="{}"} | ||
$\gamma_{\rm A}\ = \ $ { 2 3% } | $\gamma_{\rm A}\ = \ $ { 2 3% } | ||
$\gamma_{\rm B} \ = \ $ { 2.5 3% } | $\gamma_{\rm B} \ = \ $ { 2.5 3% } | ||
− | { | + | {Which scenario describes free-space attenuation? |
|type="()"} | |type="()"} | ||
− | + | + | + Scenario $\rm (A)$, |
− | - | + | - Scenario $\rm (B)$. |
− | { | + | {Which signal frequencies are the basis for the scenarios $\rm (A)$ and $\rm (B)$ ? |
|type="{}"} | |type="{}"} | ||
− | $f_{\rm A} \ = \ $ { 240 3% } $\ \rm MHz$ | + | $f_{\rm A} \ = \ $ { 240 3% } $\ \ \rm MHz$ |
− | $f_{\rm B} \ = \ $ { 151.4 3% } $\ \rm MHz$ | + | $f_{\rm B} \ = \ $ { 151.4 3% } $\ \ \rm MHz$ |
− | { | + | {Does the free-space scenario apply to all distances between $1 \ \rm m$ and $10 \ \rm km$? |
|type="()"} | |type="()"} | ||
− | + | + | + Yes, |
− | - | + | - No. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The (simplest) path loss equation is |
− | :$$V_{\rm P}(d) = | + | :$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$ |
− | * | + | *In scenario (A), the decay per decade (for example, between $d_0 = 1 \ \rm m$ and $d = 10 \ \rm m$) is exactly $20 \ \rm dB$ and in scenario (B) $25 \ \rm dB$. |
− | * | + | *It follows: |
:$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$ | :$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$ | ||
+ | '''(2)''' <u>Solution 1</u> is correct, since the free-space attenuation is characterized by the path loss exponent $\gamma = 2$. | ||
− | |||
− | + | '''(3)''' The path loss at $d_0 = 1 \ \rm m$ is in both cases $V_0 = 20 \ \rm dB$. For scenario (A) the same applies: | |
− | |||
− | '''(3)''' | ||
:$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} | :$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} | ||
\frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} | \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} | ||
− | \lambda_{\rm A} = 4 | + | \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The frequency $f_{\rm A}$ is related to the wavelength $\lambda_{\rm A}$ over the speed of light $(c)$: |
:$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} | :$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} | ||
\hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} | \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *On the other hand, for scenario (B), |
:$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$ | :$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$ | ||
:$$\Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 | :$$\Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 | ||
Line 97: | Line 95: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | '''(4)''' The <u>first suggested solution</u> is correct: | |
− | '''(4)''' | + | *In the free-space scenario (A), the Fraunhofer distance $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Thus, $d > d_{\rm F}$ always holds. |
− | * | + | *Also in scenario (B), the entire path loss curve is correct because $\lambda_{\rm B} \approx 2 \ \rm m$ or $d_{\rm F} \approx 1 \ \rm m$ . |
− | * | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]] |
Latest revision as of 13:37, 23 March 2021
Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:
- $$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$
- $$V_{\rm 0} = \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$
The graphic shows the path loss $V_{\rm P}(d)$ in $\rm dB$. The abscissa $d$ is also displayed logarithmically.
In the above equation, the following parameters are used:
- the distance $d$ of transmitter and receiver,
- the reference distance $d_0 = 1 \ \rm m$,
- the path loss exponent $\gamma$,
- the wavelength $\lambda$ of the electromagnetic wave.
Two scenarios are shown $\rm (A)$ and $\rm (B)$ with the same path loss at distance $d_0 = 1 \ \rm m$:
- $$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB} \hspace{0.05cm}.$$
One of these two scenarios describes the so-called free-space attenuation, characterized by the path loss exponent $\gamma = 2$. However, the equation for the free-space attenuation only applies in the far-field, i.e. when the distance $d$ between transmitter and receiver is greater than the Fraunhofer distance,
- $$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$
Here, $D$ is the largest physical dimension of the transmitting antenna. With an $\lambda/2$–antenna, the Fraunhofer distance has a simple expression:
- $$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$
Notes:
- This task belongs to the chapter Distance dependent attenuation and shading.
- The speed of light is $c = 3 \cdot 10^8 \ {\rm m/s}$.
Questions
Solution
- $$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$
- In scenario (A), the decay per decade (for example, between $d_0 = 1 \ \rm m$ and $d = 10 \ \rm m$) is exactly $20 \ \rm dB$ and in scenario (B) $25 \ \rm dB$.
- It follows:
- $$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$
(2) Solution 1 is correct, since the free-space attenuation is characterized by the path loss exponent $\gamma = 2$.
(3) The path loss at $d_0 = 1 \ \rm m$ is in both cases $V_0 = 20 \ \rm dB$. For scenario (A) the same applies:
- $$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m} \hspace{0.05cm}.$$
- The frequency $f_{\rm A}$ is related to the wavelength $\lambda_{\rm A}$ over the speed of light $(c)$:
- $$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} \hspace{0.05cm}.$$
- On the other hand, for scenario (B),
- $$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$
- $$\Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx 151.4 \,\,{\rm MHz}} \hspace{0.05cm}.$$
(4) The first suggested solution is correct:
- In the free-space scenario (A), the Fraunhofer distance $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Thus, $d > d_{\rm F}$ always holds.
- Also in scenario (B), the entire path loss curve is correct because $\lambda_{\rm B} \approx 2 \ \rm m$ or $d_{\rm F} \approx 1 \ \rm m$ .