Difference between revisions of "Aufgaben:Exercise 1.1Z: Simple Path Loss Model"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(29 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Mobile Kommunikation/Distanzabhängige Dämpfung und Abschattung
+
{{quiz-Header|Buchseite=Mobile_Communications/Distance_Dependent_Attenuation_and_Shading
 
}}
 
}}
  
[[File:P_ID2121__Mob_Z_1_1.png|right|frame|Bandbreitenorganisation bei DSL]]
+
[[file:EN_Mob_Z1_1.png|right|frame|Simplest path loss diagram]]
 
Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:
 
Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:
$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$
+
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$
$$V_{\rm 0} = \gamma \cdot 10\,{\rm dB}  \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$
+
:$$V_{\rm 0} = \gamma \cdot 10\,{\rm dB}  \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$
  
 
The graphic shows the path loss  $V_{\rm P}(d)$  in  $\rm dB$. The abscissa  $d$  is also displayed logarithmically.  
 
The graphic shows the path loss  $V_{\rm P}(d)$  in  $\rm dB$. The abscissa  $d$  is also displayed logarithmically.  
  
In the above equation are used:
+
In the above equation, the following parameters are used:
* the distance  $d$  of sender and receiver,
+
* the distance  $d$  of transmitter and receiver,
 
* the reference distance  $d_0 = 1 \ \rm m$,
 
* the reference distance  $d_0 = 1 \ \rm m$,
 
* the path loss exponent  $\gamma$,
 
* the path loss exponent  $\gamma$,
* the wavelength  $\lambda$  of electromagnetic wave.
+
* the wavelength  $\lambda$  of the electromagnetic wave.
  
  
 
Two scenarios are shown  $\rm (A)$  and  $\rm (B)$  with the same path loss at distance  $d_0 = 1 \ \rm m$:
 
Two scenarios are shown  $\rm (A)$  and  $\rm (B)$  with the same path loss at distance  $d_0 = 1 \ \rm m$:
$$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB}  \hspace{0.05cm}.$$
+
:$$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB}  \hspace{0.05cm}.$$
  
One of these two scenarios describes the so-called <i>free space attenuation</i>, characterized by the path loss exponent&nbsp; $\gamma = 2$. However, the equation for the free space attenuation only applies in the <i>far-field</i>, i.e. when the distance&nbsp; $d$&nbsp; between transmitter and receiver is greater than the &bdquo;Fraunhofer&ndash;distance&rdquo;
+
One of these two scenarios describes the so-called <i>free-space attenuation</i>, characterized by the path loss exponent&nbsp; $\gamma = 2$. However, the equation for the free-space attenuation only applies in the <i>far-field</i>, i.e. when the distance&nbsp; $d$&nbsp; between transmitter and receiver is greater than the <i>Fraunhofer distance</i>,
$$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$
+
:$$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$
  
Where&nbsp; $D$&nbsp; is the largest physical dimension of the transmitting antenna. With an&nbsp; $\lambda/2$&ndash;antenna, you get the simple result for this:
+
Here,&nbsp; $D$&nbsp; is the largest physical dimension of the transmitting antenna. With an&nbsp; $\lambda/2$&ndash;antenna, the Fraunhofer distance has a simple expression:
$$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$
+
:$$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$
  
  
Line 31: Line 31:
  
 
''Notes:''  
 
''Notes:''  
* The task belongs to the chapter&nbsp; [[Mobile_Communication/Distancedependent%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distance-dependent attenuation and shading]].
+
* This task belongs to the chapter&nbsp; [[Mobile_Communications/Distance_dependent_attenuation_and_shading|Distance dependent attenuation and shading]].
 
* The speed of light is&nbsp; $c = 3 \cdot 10^8 \ {\rm m/s}$.
 
* The speed of light is&nbsp; $c = 3 \cdot 10^8 \ {\rm m/s}$.
 
   
 
   
Line 38: Line 38:
  
  
===Questionnaire===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
Line 46: Line 46:
 
$\gamma_{\rm B} \ = \ $ { 2.5 3% }
 
$\gamma_{\rm B} \ = \ $ { 2.5 3% }
  
{Which scenario describes the free space attenuation?
+
{Which scenario describes free-space attenuation?
 
|type="()"}
 
|type="()"}
+ scenario &nbsp;$\rm (A)$,
+
+ Scenario &nbsp;$\rm (A)$,
 
- Scenario &nbsp;$\rm (B)$.
 
- Scenario &nbsp;$\rm (B)$.
  
Line 56: Line 56:
 
$f_{\rm B} \ = \ $ { 151.4 3% } $\ \ \rm MHz$
 
$f_{\rm B} \ = \ $ { 151.4 3% } $\ \ \rm MHz$
  
Does the free space&ndash scenario apply to all distances between&nbsp; $1 \ \ \rm m$&nbsp; and&nbsp; $10 \ \rm km$?
+
{Does the free-space scenario apply to all distances between&nbsp; $1 \ \rm m$&nbsp; and&nbsp; $10 \ \rm km$?
 
|type="()"}
 
|type="()"}
 
+ Yes,
 
+ Yes,
Line 62: Line 62:
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''&nbsp; The (simplest) path loss equation is
+
'''(1)'''&nbsp; The (simplest) path loss equation is
$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$
+
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$
  
*In scenario (A), the waste per decade (for example, between $d_0 = 1 \ \rm m$ and $d = 10 \ \rm m$) is exactly $20 \ \rm dB$ and in scenario (B) $25 \ \rm dB$.  
+
*In scenario (A), the decay per decade (for example, between $d_0 = 1 \ \rm m$ and $d = 10 \ \rm m$) is exactly $20 \ \rm dB$ and in scenario (B) $25 \ \rm dB$.  
 
*It follows:
 
*It follows:
$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$
+
:$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$
  
  
 
+
'''(2)'''&nbsp; <u>Solution 1</u> is correct, since the free-space attenuation is characterized by the path loss exponent $\gamma = 2$.
'''(2)'''&nbsp; Correct is <u>solution 1</u>, since the free space attenuation is characterized by the path loss exponent $\gamma = 2$.
 
 
 
  
  
 
'''(3)'''&nbsp; The path loss at $d_0 = 1 \ \rm m$ is in both cases $V_0 = 20 \ \rm dB$. For scenario (A) the same applies:
 
'''(3)'''&nbsp; The path loss at $d_0 = 1 \ \rm m$ is in both cases $V_0 = 20 \ \rm dB$. For scenario (A) the same applies:
$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
+
:$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m}
 
  \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The frequency $f_{\rm A}$ is related to the wavelength $\lambda_{\rm A}$ over the speed of light $c$:
+
*The frequency $f_{\rm A}$ is related to the wavelength $\lambda_{\rm A}$ over the speed of light $(c)$:
$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz}
+
:$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz}
  \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}}
+
  \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*On the other hand, the scenario (B)
+
*On the other hand, for scenario (B),
$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$
+
:$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$
$$\Rightarrow \hspace{0.3cm}  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31
+
:$$\Rightarrow \hspace{0.3cm}  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31
   \hspace {0.3cm} \Rightarrow \hspace{0.3cm}
+
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
  {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm}
 
  {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}
  {f_{\rm B}}} = \frac{6.31}{10} \cdot {f_{\rm A}}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline {\approx 151.4 \,\,{\rm MHz}}
+
  {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx 151.4 \,\,{\rm MHz}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
 
+
'''(4)'''&nbsp; The <u>first suggested solution</u> is correct:  
'''(4)'''&nbsp; <u>first suggested solution</u> is correct:  
+
*In the free-space scenario (A), the Fraunhofer distance&nbsp; $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Thus, &nbsp; $d > d_{\rm F}$ always holds.  
*In free space&ndash;scenario (A) the Fraunhofer&ndash;distance&nbsp; $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Thus, the following always applies&nbsp; $d > d_{\rm F}$.  
+
*Also in scenario (B), the entire path loss curve is correct because &nbsp; $\lambda_{\rm B} \approx 2 \ \rm m$&nbsp; or &nbsp;$d_{\rm F} \approx 1 \ \rm m$&nbsp; .
*Also in scenario (B) is because of&nbsp; $\lambda_{\rm B} \approx 2 \ \rm m$&nbsp; or &nbsp;$d_{\rm F} \approx 1 \ \rm m$&nbsp; the entire displayed course correct.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^1.1 Distance-dependent attenuation^]]
+
[[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]]

Latest revision as of 13:37, 23 March 2021

Simplest path loss diagram

Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:

$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$
$$V_{\rm 0} = \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$

The graphic shows the path loss  $V_{\rm P}(d)$  in  $\rm dB$. The abscissa  $d$  is also displayed logarithmically.

In the above equation, the following parameters are used:

  • the distance  $d$  of transmitter and receiver,
  • the reference distance  $d_0 = 1 \ \rm m$,
  • the path loss exponent  $\gamma$,
  • the wavelength  $\lambda$  of the electromagnetic wave.


Two scenarios are shown  $\rm (A)$  and  $\rm (B)$  with the same path loss at distance  $d_0 = 1 \ \rm m$:

$$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB} \hspace{0.05cm}.$$

One of these two scenarios describes the so-called free-space attenuation, characterized by the path loss exponent  $\gamma = 2$. However, the equation for the free-space attenuation only applies in the far-field, i.e. when the distance  $d$  between transmitter and receiver is greater than the Fraunhofer distance,

$$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$

Here,  $D$  is the largest physical dimension of the transmitting antenna. With an  $\lambda/2$–antenna, the Fraunhofer distance has a simple expression:

$$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$




Notes:



Questions

1

Which path loss exponents apply to the scenarios  $\rm (A)$  and  $\rm (B)$?

$\gamma_{\rm A}\ = \ $

$\gamma_{\rm B} \ = \ $

2

Which scenario describes free-space attenuation?

Scenario  $\rm (A)$,
Scenario  $\rm (B)$.

3

Which signal frequencies are the basis for the scenarios  $\rm (A)$  and  $\rm (B)$ ?

$f_{\rm A} \ = \ $

$\ \ \rm MHz$
$f_{\rm B} \ = \ $

$\ \ \rm MHz$

4

Does the free-space scenario apply to all distances between  $1 \ \rm m$  and  $10 \ \rm km$?

Yes,
No.


Solution

(1)  The (simplest) path loss equation is

$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$
  • In scenario (A), the decay per decade (for example, between $d_0 = 1 \ \rm m$ and $d = 10 \ \rm m$) is exactly $20 \ \rm dB$ and in scenario (B) $25 \ \rm dB$.
  • It follows:
$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$


(2)  Solution 1 is correct, since the free-space attenuation is characterized by the path loss exponent $\gamma = 2$.


(3)  The path loss at $d_0 = 1 \ \rm m$ is in both cases $V_0 = 20 \ \rm dB$. For scenario (A) the same applies:

$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m} \hspace{0.05cm}.$$
  • The frequency $f_{\rm A}$ is related to the wavelength $\lambda_{\rm A}$ over the speed of light $(c)$:
$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} \hspace{0.05cm}.$$
  • On the other hand, for scenario (B),
$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$
$$\Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx 151.4 \,\,{\rm MHz}} \hspace{0.05cm}.$$

(4)  The first suggested solution is correct:

  • In the free-space scenario (A), the Fraunhofer distance  $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Thus,   $d > d_{\rm F}$ always holds.
  • Also in scenario (B), the entire path loss curve is correct because   $\lambda_{\rm B} \approx 2 \ \rm m$  or  $d_{\rm F} \approx 1 \ \rm m$  .