Difference between revisions of "Aufgaben:Exercise 4.4: Modulation in LTE"

From LNTwww
m (Javier moved page Exercises:Exercise 4.4: Modulation in LTE to Exercise 4.4: Modulation in LTE: Text replacement - "Exercises:Exercise" to "Aufgaben:Exercise")
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(18 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Bitübertragungsschicht bei LTE
+
{{quiz-Header|Buchseite=Mobile_Communications/Physical_Layer_for_LTE
 
}}
 
}}
  
  
[[File:EN_Mob_A_4_4.png|right|frame|Durchsatzvergleich für LTE]]
+
[[File:EN_Mob_A_4_4_neu1.png|right|frame|Throughput comparison for LTE]]
Bei LTE wählt der Scheduler je nach Beschaffenheit der Umgebung und Entfernung des Teilnehmers zur Basisstation das passende Modulationsverfahren aus. In dieser Aufgabe betrachten wir verschiedene QAM–Verfahren, nämlich:
+
With LTE, the scheduler selects the appropriate modulation method depending on the nature of the environment and the distance of the user from the base station.  In this task, we consider various  [[Modulation_Methods/Quadratur%E2%80%93Amplitudenmodulation#Allgemeine_Beschreibung_und_Signalraumzuordnung|Quadrature Amplitude Modulation]]  $\rm (QAM)$  procedures, namely
*4–QAM mit  $b\text{ = 2 bit/Symbol}$,
+
*$\rm 4–QAM$  with  $b\text{ = 2 bit/symbol}$,
*16– QAM mit  $b\text{ = 4 bit/Symbol}$,
+
*$\rm 16–QAM$  with  $b\text{ = 4 bit/symbol}$,
*64– QAM mit  $b\text{ = 6 bit/Symbol}$.
+
*$\rm 64–QAM$  with  $b\text{ = 6 bit/symbol}$.
  
  
Rein formal lassen sich diese Verfahren als  $b^{2}$–QAM”  bezeichnen. Rechts dargestellt sind die Signalraumkonstellationen für 16–QAM und 64–QAM angegeben. Die gelben Punkte kennzeichnen jeweils die 4–QAM.
+
Formally, these procedures can be described as  $b^{2}–{\rm QAM}$.  The signal space constellations for 16-QAM and 64-QAM are shown on the right.  The bright dots indicate the 4–QAM.
  
Das untere Diagramm aus  [MG08]  zeigt für verschiedene  $b$–Werte den Durchsatz abhängig vom Signal–zu–Stör–Abstand    ⇒   $10 \cdot {\rm lg \ SNR}$. Man erkennt, dass bei sehr gutem Kanal $($also sehr großem  $\rm SNR)$  der Durchsatz näherungsweise proportional zu  $b$  ist.
+
The lower diagram from &nbsp; [MG08] &nbsp; shows for different&nbsp; $b$&nbsp; values the throughput depending on&nbsp; $10 \cdot {\rm lg \ SNR}$&nbsp; <br>with $\rm SNR$ &nbsp; &rArr; &nbsp; "signal-to-noise ratio".  
  
 +
You can see that for a very good channel $($very large&nbsp; $\rm SNR)$&nbsp; the throughput is approximately proportional to&nbsp;$b$.
  
  
Line 21: Line 22:
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Bitübertragungsschicht_bei_LTE|Bitübertragungsschicht bei LTE]].  
+
''Notes:''  
*Bezug genommen wird insbesondere auf die Seiten&nbsp; [[Mobile_Kommunikation/Bitübertragungsschicht_bei_LTE#Modulation_bei_LTE|Modulation bei LTE]]&nbsp; sowie&nbsp; [[Modulationsverfahren#collapse4|Digitale Modulationsverfahren]]&nbsp; im Buch „Modulationsverfahren”.
+
*This task belongs to the chapter&nbsp; [[Mobile_Communications/Physical_Layer_for_LTE|Physical Layer for LTE]].  
*Die in der obigen Skizze eingezeichneten Gebiete &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; und &nbsp;$\rm C$&nbsp; sollen in der Teilaufgabe '''(1)''' den Modulationsverfahren 4–QAM, 16–QAM und 64–QAM zugeordnet werden.
+
*Reference is made in particular to the pages&nbsp; [[Mobile_Communications/Physical_Layer_for_LTE#Modulation_for_LTE|Modulation for LTE]]&nbsp; as well as to chapter&nbsp; [[Modulation_Methods#collapse4|Digital Modulation Methods]]&nbsp; in the book „Modulation Methods”.
*Der Literaturhinweis [MG08] bezieht sich auf: &nbsp; <br>Myung, H.; Goodman, D.: Single Carrier FDMA A New Air Interface for Long Term Evolution.. West Sussex: John Wiley & Sons, 2008.
+
* In subtask&nbsp; '''(1)'''&nbsp; the areas &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; and &nbsp;$\rm C$&nbsp; shown in the above sketch are to be assigned to the modulation methods 4-QAM, 16-QAM and 64-QAM.
 +
*The literature reference [MG08] refers to: &nbsp; Myung, H.; Goodman, D.: <br>&nbsp; &nbsp; Single Carrier FDMA - A New Air Interface for Long Term Evolution. West Sussex: John Wiley & Sons, 2008.
 
    
 
    
  
  
  
===Fragebogen===
+
===Questionnaire===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Zuordnungen gelten in den Gebieten &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; und &nbsp;$\rm C$?
+
{Which assignments apply in the areas  &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; and &nbsp;$\rm C$?
 
|type="[]"}
 
|type="[]"}
- Das Modulationsverfahren für Gebiet &nbsp;$\rm A$&nbsp; ist 4–QAM.
+
- The modulation method for area &nbsp;$\rm A$&nbsp; is&nbsp; 4-QAM.
+ Das Modulationsverfahren für Gebiet &nbsp;$\rm B$&nbsp; ist 16–QAM.
+
+ The modulation method for area &nbsp;$\rm B$&nbsp; is&nbsp; 16-QAM.
- Das Modulationsverfahren für Gebiet &nbsp;$\rm C$&nbsp; ist 64–QAM.
+
- The modulation method for area &nbsp;$\rm C$&nbsp; is&nbsp; 64-QAM.
  
{Ab welchem Signal–zu–Stör–Abstand&nbsp; $(\rm SNR_{1})$&nbsp; ist 16–QAM besser als 4–QAM?
+
{From which signal-to-noise ratio&nbsp; $(\rm SNR_{1})$&nbsp; is 16-QAM better than 4-QAM?
 
|type="{}"}
 
|type="{}"}
 
$10 \cdot \rm lg \ SNR_{1} \ = \ $ { 15 3% } $\ \rm dB$
 
$10 \cdot \rm lg \ SNR_{1} \ = \ $ { 15 3% } $\ \rm dB$
  
{Ab welchem Signal–zu–Stör–Abstand  $(\rm SNR_{2})$ ist 64–QAM besser als 16–QAM?
+
{From which signal-to-noise ratio&nbsp; $(\rm SNR_{2})$&nbsp; is 64-QAM better than 16-QAM?
 
|type="{}"}
 
|type="{}"}
 
$10 \cdot \rm lg \ SNR_{2} \ = \ $ { 22 3% } $\ \rm dB$
 
$10 \cdot \rm lg \ SNR_{2} \ = \ $ { 22 3% } $\ \rm dB$
  
{Welches Modulationsverfahren wäre für&nbsp; $10 \cdot {\rm lg \ SNR} = 5 \ \rm dB$&nbsp; am besten geeignet?
+
{Which modulation method would be most suitable for&nbsp; $10 \cdot {\rm lg \ SNR} = 5 \ \rm dB$&nbsp;?
 
|type="()"}
 
|type="()"}
+ BPSK (''Binary Phase Shift Keying''),
+
+ BPSK&nbsp; ("Binary Phase Shift Keying"),
- QPSK (''Quaternary Phase Shift Keying''),
+
- QPSK&nbsp; ("Quaternary Phase Shift Keying"),
- 4–QAM.
+
- 4–QAM&nbsp; ("Quadrature Amplitude Modulation").
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;  Richtig ist nur der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp;  Correct is only the&nbsp; <u>solution 2</u>:
*Im sendernahen Gebiet &nbsp;$\rm A$&nbsp; herrschen üblicherweise die besten Empfangsbedingungen vor. Hier kann das Modulationsverfahren 64–QAM verwendet werden, das bei idealen Bedingungen den höchsten Durchsatz ermöglicht, aber bei sinkendem SNR auch am meisten degradiert.
+
*The area close to the transmitter &nbsp;$\rm A$&nbsp; usually has the best reception conditions.&nbsp; Here the 64-QAM modulation method can be used, which allows the highest throughput under ideal conditions, but also degrades the most when the SNR decreases.
*Für das senderferne Gebiet &nbsp;$\rm C$&nbsp; ist dagegen die 64–QAM nicht geeignet. Hier verwendet man besser das niederststufigste Modulationsverfahren 4–QAM.  
+
*64-QAM, on the other hand, is not suitable for the remote area &nbsp;$\rm C$&nbsp;.&nbsp; Here it is better to use the lowest level modulation method "4-QAM".  
  
  
  
[[File:EN_Mob_A_4_4b.png|right|frame|Durchsatz der QAM–Varianten]]
+
[[File:EN_Mob_A_4_4b_neu1.png|right|frame|Throughput of the QAM versions]]
'''(2)'''&nbsp; Zu vergleichen sind hier die beiden mit „$2 \ \rm bit/Symbol$” und „$4 \ \rm bit/Symbol$” beschrifteten Kurven.  
+
'''(2)'''&nbsp; Compare here the two curves labeled&nbsp; $2 \ \rm bit/symbol$&nbsp; and &nbsp;$4 \ \rm bit/symbol$.  
*Der Schnittpunkt liegt bei $10 \cdot {\rm lg \ SNR_{1}}\hspace{0.15cm}\underline{ \approx 15 \ \rm dB}$.
+
*The point of intersection is&nbsp; $10 \cdot {\rm lg \ SNR_{1}}\hspace{0.15cm}\underline{ \approx 15 \ \rm dB}$.
* Daraus folgt direkt: Die 16–QAM führt nur dann zu einem größeren Durchsatz als die 4–QAM, wenn $10 \cdot {\rm lg \ SNR} > 15 \ \rm dB$ ist.
+
* It follows immediately: &nbsp; The 16-QAM only results in a higher throughput than the 4-QAM if&nbsp; $10 \cdot {\rm lg \ SNR} > 15 \ \ \rm dB$.
  
  
  
'''(3)'''&nbsp; Das Ergebnis $10 \cdot {\rm  lg \ SNR_{2}}\hspace{0.15cm}\underline{ \approx 22 \ \rm dB}$ ergibt sich aus dem Schnittpunkt der beiden Kurven „$4 \ \rm bit/Symbol$” und „$6 \ \rm bit/Symbol$.
+
'''(3)'''&nbsp; $10 \cdot {\rm  lg \ SNR_{2}}\hspace{0.15cm}\underline{ \approx 22 \ \rm dB}$&nbsp; results from the intersection of the two curves&nbsp; $4 \ \rm bit/symbol$&nbsp; and&nbsp; $6 \ \rm bit/symbol$.
  
  
  
'''(4)'''&nbsp; Aus der Darstellung ist zu erkennen, dass mit 4–QAM ($2 \ \rm bit/Symbol$) der Durchsatz (nahezu) $0$ ist.  
+
'''(4)'''&nbsp; From the diagram you can see that with 4-QAM&nbsp; $(2 \rm bit/symbol)$&nbsp; the throughput is (almost) zero.  
*Die QPSK ist bei diesem Vergleich identisch mit der 4–QAM und somit ebenfalls ungeeignet.
+
*In this comparison, the QPSK is identical to the 4-QAM and therefore unsuitable, too.
  
*Besser wäre ''Binary Phase Shift Keying'' (BPSK), was der untersten Kurve „$1 \ \rm bit/Symbol$” entspricht  &nbsp; &rArr; &nbsp; <u>Lösungsvorschlag 1</u>.
+
*Better would be "Binary Phase Shift Keying"&nbsp; $\rm (BPSK)$, which corresponds to the lowest curve&nbsp; $1\ \rm bit/symbol$ &nbsp; &rArr; &nbsp; <u>solution 1</u>.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 84: Line 86:
  
  
[[Category:Exercises for Mobile Communications|^4.4 Physical Layer in LTE^]]
+
[[Category:Mobile Communications: Exercises|^4.4 Physical Layer in LTE^]]

Latest revision as of 13:37, 23 March 2021


Throughput comparison for LTE

With LTE, the scheduler selects the appropriate modulation method depending on the nature of the environment and the distance of the user from the base station.  In this task, we consider various  Quadrature Amplitude Modulation  $\rm (QAM)$  procedures, namely

  • $\rm 4–QAM$  with  $b\text{ = 2 bit/symbol}$,
  • $\rm 16–QAM$  with  $b\text{ = 4 bit/symbol}$,
  • $\rm 64–QAM$  with  $b\text{ = 6 bit/symbol}$.


Formally, these procedures can be described as  $b^{2}–{\rm QAM}$.  The signal space constellations for 16-QAM and 64-QAM are shown on the right.  The bright dots indicate the 4–QAM.

The lower diagram from   [MG08]   shows for different  $b$  values the throughput depending on  $10 \cdot {\rm lg \ SNR}$ 
with $\rm SNR$   ⇒   "signal-to-noise ratio".

You can see that for a very good channel $($very large  $\rm SNR)$  the throughput is approximately proportional to $b$.




Notes:

  • This task belongs to the chapter  Physical Layer for LTE.
  • Reference is made in particular to the pages  Modulation for LTE  as well as to chapter  Digital Modulation Methods  in the book „Modulation Methods”.
  • In subtask  (1)  the areas  $\rm A$,  $\rm B$  and  $\rm C$  shown in the above sketch are to be assigned to the modulation methods 4-QAM, 16-QAM and 64-QAM.
  • The literature reference [MG08] refers to:   Myung, H.; Goodman, D.:
        Single Carrier FDMA - A New Air Interface for Long Term Evolution. West Sussex: John Wiley & Sons, 2008.



Questionnaire

1

Which assignments apply in the areas  $\rm A$,  $\rm B$  and  $\rm C$?

The modulation method for area  $\rm A$  is  4-QAM.
The modulation method for area  $\rm B$  is  16-QAM.
The modulation method for area  $\rm C$  is  64-QAM.

2

From which signal-to-noise ratio  $(\rm SNR_{1})$  is 16-QAM better than 4-QAM?

$10 \cdot \rm lg \ SNR_{1} \ = \ $

$\ \rm dB$

3

From which signal-to-noise ratio  $(\rm SNR_{2})$  is 64-QAM better than 16-QAM?

$10 \cdot \rm lg \ SNR_{2} \ = \ $

$\ \rm dB$

4

Which modulation method would be most suitable for  $10 \cdot {\rm lg \ SNR} = 5 \ \rm dB$ ?

BPSK  ("Binary Phase Shift Keying"),
QPSK  ("Quaternary Phase Shift Keying"),
4–QAM  ("Quadrature Amplitude Modulation").


Solution

(1)  Correct is only the  solution 2:

  • The area close to the transmitter  $\rm A$  usually has the best reception conditions.  Here the 64-QAM modulation method can be used, which allows the highest throughput under ideal conditions, but also degrades the most when the SNR decreases.
  • 64-QAM, on the other hand, is not suitable for the remote area  $\rm C$ .  Here it is better to use the lowest level modulation method "4-QAM".


Throughput of the QAM versions

(2)  Compare here the two curves labeled  $2 \ \rm bit/symbol$  and  $4 \ \rm bit/symbol$.

  • The point of intersection is  $10 \cdot {\rm lg \ SNR_{1}}\hspace{0.15cm}\underline{ \approx 15 \ \rm dB}$.
  • It follows immediately:   The 16-QAM only results in a higher throughput than the 4-QAM if  $10 \cdot {\rm lg \ SNR} > 15 \ \ \rm dB$.


(3)  $10 \cdot {\rm lg \ SNR_{2}}\hspace{0.15cm}\underline{ \approx 22 \ \rm dB}$  results from the intersection of the two curves  $4 \ \rm bit/symbol$  and  $6 \ \rm bit/symbol$.


(4)  From the diagram you can see that with 4-QAM  $(2 \rm bit/symbol)$  the throughput is (almost) zero.

  • In this comparison, the QPSK is identical to the 4-QAM and therefore unsuitable, too.
  • Better would be "Binary Phase Shift Keying"  $\rm (BPSK)$, which corresponds to the lowest curve  $1\ \rm bit/symbol$   ⇒   solution 1.