Difference between revisions of "Aufgaben:Exercise 1.2Z: Lognormal Fading Revisited"
From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises") |
|||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/Distance_Dependent_Attenuation_and_Shading |
}} | }} | ||
− | [[File:P_ID2123__Mob_Z_1_2.png|right|frame|Path loss | + | [[File:P_ID2123__Mob_Z_1_2.png|right|frame|Path loss and lognormal fading]] |
− | We assume similar conditions as in [[Aufgaben:Exercise_1.2:_Lognormal_Channel_Model| | + | We assume similar conditions as in [[Aufgaben:Exercise_1.2:_Lognormal_Channel_Model|Exercise 1. 2]] but now we summarize the purely distance-dependent path loss V0 and the mean value mS of the lognormal fading (the index "S" stands for <i>Shadowing</i>): |
− | V1=V0+mS. | + | :V1=V0+mS. |
The total path loss is then given by the equation | The total path loss is then given by the equation | ||
− | VP=V1+V2(t) | + | :VP=V1+V2(t) |
− | where V2(t) describes a ''lognormal | + | where V2(t) describes a ''lognormal distribution'' with mean value zero: |
− | $$f_{ | + | :$$f_{V_{\rm S}}(V_{\rm S}) = \frac {1}{ \sqrt{2 \pi }\cdot \sigma_{\rm S}} \cdot {\rm e }^{ - { (V_{\rm S}\hspace{0.05cm}- \hspace{0.05cm}m_{\rm S})^2}/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{\rm S}^2) }\hspace{0.05cm}.$$ |
The path loss model shown in the graphic is suitable for the scenario described here: | The path loss model shown in the graphic is suitable for the scenario described here: | ||
− | *Multiply the transmitted signal s(t) first with a constant factor k1 and further with a stochastic quantity z2(t) with the probability density function (PDF) fz2(z2) | + | *Multiply the transmitted signal s(t) first with a constant factor k1 and further with a stochastic quantity z2(t) with the probability density function $\rm (PDF)$ fz2(z2). |
+ | * Then the signal r(t) results at the output, whose power PE(t) is of course also time-dependent due to the stochastic component. | ||
*The PDF of the lognormally distributed random variable z2 is for z_2 ≥ 0: | *The PDF of the lognormally distributed random variable z2 is for z_2 ≥ 0: | ||
− | $$f_{ | + | :$$f_{z_{\rm 2}}(z_{\rm 2}) = \frac {{\rm e^{- {\rm ln}^2 (z_{\rm 2}) |
+ | /({2 \hspace{0.05cm}\cdot \hspace{0.05cm} C^2 \hspace{0.05cm} \cdot \hspace{0.05cm} \sigma_{\rm S}^2}) | ||
+ | } } }{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot z_2} \hspace{0.8cm}{\rm with} \hspace{0.8cm} C = \frac{{\rm ln} \hspace{0.1cm}(10)}{20\,\,{\rm dB}}\hspace{0.05cm}.$$ | ||
*For z_2 ≤ 0 this PDF is equal to zero. | *For z_2 ≤ 0 this PDF is equal to zero. | ||
Line 27: | Line 30: | ||
''Notes:'' | ''Notes:'' | ||
− | * This | + | * This exercise belongs to the chapter [[Mobile_Communications/Distance_dependent_attenuation_and_shading|Distance dependent attenuation and shading]]. |
* Use the following parameters: | * Use the following parameters: | ||
− | V1=60dB,σS=6dB. | + | :V1=60dB,σS=6dB. |
* The probability that a mean-free Gaussian random variable z is greater than its standard deviation σ, is | * The probability that a mean-free Gaussian random variable z is greater than its standard deviation σ, is | ||
− | Pr(z>σ)=Pr(z<−σ)=Q(1)≈0.158. | + | :Pr(z>σ)=Pr(z<−σ)=Q(1)≈0.158. |
* Also, Pr(z>2σ)=Pr(z<−2σ)=Q(2)≈0.023. | * Also, Pr(z>2σ)=Pr(z<−2σ)=Q(2)≈0.023. | ||
* Again for clarification: z2 is the fading coefficient in linear units, while V2 is the fading coefficient in logarithmic units. | * Again for clarification: z2 is the fading coefficient in linear units, while V2 is the fading coefficient in logarithmic units. | ||
*The following conversions apply: | *The following conversions apply: | ||
− | $$z_2 = 10^{-V_{\rm 2}/20\,{\rm dB}}\hspace{0.05cm}, \hspace{0.2cm} | + | :$$z_2 = 10^{-V_{\rm 2}/20\,{\rm dB}}\hspace{0.05cm}, \hspace{0.2cm} |
V_{\rm 2} = -20\,{\rm dB} \cdot {\rm lg}\hspace{0.15cm}z_2\hspace{0.05cm}.$$ | V_{\rm 2} = -20\,{\rm dB} \cdot {\rm lg}\hspace{0.15cm}z_2\hspace{0.05cm}.$$ | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
{How large should the constant k1 be? | {How large should the constant k1 be? | ||
Line 67: | Line 70: | ||
− | {What statements are valid for the average | + | {What statements are valid for the average received power E[PE(t)]? <u>Note:</u> P′E is the power after multiplication by k1 (see diagram). |
|type="[]"} | |type="[]"} | ||
- E[PE(t)]=P′E | - E[PE(t)]=P′E | ||
Line 74: | Line 77: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' The constant k1 generates the time-independent path loss V1=60 dB. From this follows: | + | '''(1)''' The constant k1 generates the time-independent path loss V1=60 dB. From this follows: |
− | k1=10−V1/(20dB)=0.001_. | + | :k1=10−V1/(20dB)=0.001_. |
− | '''(2)''' Only the <u>second statement</u> is correct: | + | '''(2)''' Only the <u>second statement</u> is correct: |
− | *For the Gaussian random variable V2 all values between | + | *For the Gaussian random variable V2 all values between $-∞$ and +∞ are (theoretically) possible. |
− | *The transformation $z_2 = 10^{{\it | + | *The transformation $z_2 = 10^{{\it -V_2}\rm /20}$ results in only positive values for the linear random variable z2, <br>namely between 0 $($if V2 is positive and goes to infinity$)$ and $+∞$ $($very large negative values of $V_2)$. |
− | '''(3)''' The random value z2 can only be positive. Therefore the PDF value $f_{\rm z2}(z_2 = 0)\hspace{0.15cm} | + | '''(3)''' The random value z2 can only be positive. Therefore the PDF value fz2(z2=0)=0_. |
− | *The PDF–value for the abscissa value z2=1 is obtained by inserting it into the given equation: | + | *The PDF–value for the abscissa value z2=1 is obtained by inserting it into the given equation: |
− | :$$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} | + | :$$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm e^{- {\rm ln}^2 (z_{\rm 2}=1) |
+ | /({2 \hspace{0.05cm}\cdot \hspace{0.05cm} C^2 \hspace{0.05cm} \cdot \hspace{0.05cm} \sigma_{\rm S}^2}) | ||
+ | } } }{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)} = | ||
\frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}{ {\rm ln} \hspace{0.1cm}(10) } | \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}{ {\rm ln} \hspace{0.1cm}(10) } | ||
\hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$ | \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$ | ||
− | *The first portion is equal to the | + | *The first portion is equal to the PDF–value $f_{V2}(V_2 = 0)$. |
− | *C considers the | + | *C considers the magnitude of the derivative of the non-linear characteristic z2=g(V2) for V2=0 dB or z2=1. |
− | *Finally, for z2=2: | + | *Finally, for z2=2: |
:$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot | :$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot | ||
{\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot | {\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot | ||
Line 101: | Line 106: | ||
− | '''(4)''' If you take into account the relationship between z2 and V2, you get | + | '''(4)''' If you take into account the relationship between z2 and V2, you get |
− | $${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5} | + | :$${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5} |
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | $${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842} | + | :$${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842} |
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | $${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S}) | + | :$${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S}) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *The probability that a Gaussian variable is greater than 2⋅σ equals Q(2): | + | *The probability that a Gaussian variable is greater than 2⋅σ equals Q(2): |
− | $${\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} | + | :$${\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
'''(5)''' The <u>statement 3</u> is correct: | '''(5)''' The <u>statement 3</u> is correct: | ||
− | *The first statement is certainly not correct, since the mean value mS refers to the logarithmic received power (in dBm | + | *The first statement is certainly not correct, since the mean value mS refers to the logarithmic received power $($in $\rm dBm)$. |
− | *To clarify whether the second or the third statement is correct, we assume PS=1 W, V1=60 dB ⇒ P_{\rm E}' = 1 \ {\rm µ W} and the following PDF for V2: | + | *To clarify whether the second or the third statement is correct, we assume PS=1 W, V1=60 dB ⇒ P_{\rm E}' = 1 \ {\rm µ W} and the following PDF for V2: |
:$$f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) | :$$f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) | ||
+ 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.$$ | + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.$$ | ||
− | *Half of the time, P_{\rm E} = 1 \ \rm µ W, while each of the following has 25% probability:: | + | *Half of the time, P_{\rm E} = 1 \ \rm µ W, while each of the following has 25% probability:: |
− | V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\,}{\rm µ W}\hspace{0.05cm}, | + | :V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\,}{\rm µ W}\hspace{0.05cm}, |
− | V_{\rm 2}= -10\,\,{\,}{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\,}{\rm µ W}\hspace{0.05cm}. | + | :V_{\rm 2}= -10\,\,{\,}{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\,}{\rm µ W}\hspace{0.05cm}. |
*The mean value is then: | *The mean value is then: | ||
− | $${\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+ 0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W} | + | :$${\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+ 0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Line 137: | Line 142: | ||
− | [[Category: | + | [[Category:Mobile Communications: Exercises|^1.1 Distance-Dependent Attenuation^]] |
Latest revision as of 14:38, 23 March 2021
We assume similar conditions as in Exercise 1. 2 but now we summarize the purely distance-dependent path loss V0 and the mean value mS of the lognormal fading (the index "S" stands for Shadowing):
- V1=V0+mS.
The total path loss is then given by the equation
- VP=V1+V2(t)
where V2(t) describes a lognormal distribution with mean value zero:
- fVS(VS)=1√2π⋅σS⋅e−(VS−mS)2/(2⋅σ2S).
The path loss model shown in the graphic is suitable for the scenario described here:
- Multiply the transmitted signal s(t) first with a constant factor k1 and further with a stochastic quantity z2(t) with the probability density function (PDF) fz2(z2).
- Then the signal r(t) results at the output, whose power PE(t) is of course also time-dependent due to the stochastic component.
- The PDF of the lognormally distributed random variable z2 is for z2≥0:
- fz2(z2)=e−ln2(z2)/(2⋅C2⋅σ2S)√2π⋅C⋅σS⋅z2withC=ln(10)20dB.
- For z2≤0 this PDF is equal to zero.
Notes:
- This exercise belongs to the chapter Distance dependent attenuation and shading.
- Use the following parameters:
- V1=60dB,σS=6dB.
- The probability that a mean-free Gaussian random variable z is greater than its standard deviation σ, is
- Pr(z>σ)=Pr(z<−σ)=Q(1)≈0.158.
- Also, Pr(z>2σ)=Pr(z<−2σ)=Q(2)≈0.023.
- Again for clarification: z2 is the fading coefficient in linear units, while V2 is the fading coefficient in logarithmic units.
- The following conversions apply:
- z2=10−V2/20dB,V2=−20dB⋅lgz2.
Questions
Solution
(1) The constant k1 generates the time-independent path loss V1=60 dB. From this follows:
- k1=10−V1/(20dB)=0.001_.
(2) Only the second statement is correct:
- For the Gaussian random variable V2 all values between −∞ and +∞ are (theoretically) possible.
- The transformation z2=10−V2/20 results in only positive values for the linear random variable z2,
namely between 0 (if V2 is positive and goes to infinity) and +∞ (very large negative values of V2).
(3) The random value z2 can only be positive. Therefore the PDF value fz2(z2=0)=0_.
- The PDF–value for the abscissa value z2=1 is obtained by inserting it into the given equation:
- fz2(z2=1) = e−ln2(z2=1)/(2⋅C2⋅σ2S)√2π⋅C⋅σS⋅(z2=1)=1√2π⋅6dB⋅20dBln(10)≈0.578_.
- The first portion is equal to the PDF–value fV2(V2=0).
- C considers the magnitude of the derivative of the non-linear characteristic z2=g(V2) for V2=0 dB or z2=1.
- Finally, for z2=2:
- fz2(z2=2) = fz2(z2=1)z2=2⋅exp[−ln2(2)2⋅C2⋅σ2S]=0.5782⋅exp[−0.480.952]≈0.174_.
(4) If you take into account the relationship between z2 and V2, you get
- Pr(z2>1) = Pr(V2<0dB)=0.5_,
- Pr(z2>0.5) = Pr(V2<6dB)=1−Pr(V2>6dB)=1−Pr(V2>σS)=1−Q(1)=0.842_,
- Pr(z2>4) = Pr(V2<−12dB)=Pr(V2>+12dB)=Pr(V2>2σS).
- The probability that a Gaussian variable is greater than 2⋅σ equals Q(2):
- Pr(z2>4)=Q(2)=0.023_.
(5) The statement 3 is correct:
- The first statement is certainly not correct, since the mean value mS refers to the logarithmic received power (in dBm).
- To clarify whether the second or the third statement is correct, we assume PS=1 W, V1=60 dB ⇒ P_{\rm E}' = 1 \ {\rm µ W} and the following PDF for V_2:
- f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.
- Half of the time, P_{\rm E} = 1 \ \rm µ W, while each of the following has 25\% probability::
- V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\,}{\rm µ W}\hspace{0.05cm},
- V_{\rm 2}= -10\,\,{\,}{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\,}{\rm µ W}\hspace{0.05cm}.
- The mean value is then:
- {\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+ 0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W} \hspace{0.05cm}.
- This simple calculation with discrete probabilities instead of a continuous PDF indicates that statement 3 is correct.