Difference between revisions of "Aufgaben:Exercise 2.5Z: Multi-Path Scenario"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(19 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]]
+
[[File:EN_Mob_A_2_5Z.png|right|frame|Mobile radio scenario with three paths]]
In  [[Aufgaben:Exercise_2.5:_Scatter_Function| Exercise 2.5]], a delay–Doppler function was given. From this, we will calculate and interpret the other system functions. The given scatter function  $s(\tau_0, f_{\rm D})$  was
+
In  [[Aufgaben:Exercise_2.5:_Scatter_Function| Exercise 2.5]], a delay–Doppler function (or scatter function) was given.  From this, you should calculate and interpret the other system functions.  The given scatter function  $s(\tau_0, f_{\rm D})$  was
 
:$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\tau_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
 
:$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\tau_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
 
:$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz})  
 
:$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz})  
Line 9: Line 9:
  
  
''Note:''   In our learning tutorial,  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  is also identified with  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$ .  
+
''Note:''   In our learning tutorial,  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  is also identified with  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$.  
  
Here we have replaced the delay variable  $\tau$  with  $\tau_0$ . The new variable  $\tau_0$  describes the difference between the delay of a path and the delay  $\tau_1$  of the main path. The main path is thus identified in the above equation by  $\tau_0 = 0$ .
+
Here we have replaced the delay variable  $\tau$  with  $\tau_0$ .  The new variable  $\tau_0$  describes the difference between the delay of a path and the delay  $\tau_1$  of the main path.  The main path is thus identified in the above equation by  $\tau_0 = 0$.
  
Now, we try to find a mobile radio scenario in which this scatter function would actually occur. The basic structure is sketched above as a top view, and the following hold:
+
Now, we try to find a mobile radio scenario in which this scatter function would actually occur.  The basic structure is sketched above as a top view, and the following hold:
* A single frequency is transmitted  $f_{\rm S} = 2 \ \rm GHz$.
+
* A single frequency is transmitted:  $f_{\rm S} = 2 \ \rm GHz$.
* The mobile receiver  $\rm (E)$  is represented here by a yellow dot. It is not known whether the vehicle is stationary, moving towards the transmitter  $\rm (S)$  or moving away from it.
+
* The mobile receiver  $\rm (E)$  is represented here by a yellow dot.  It is not known whether the vehicle is stationary, moving towards the transmitter  $\rm (S)$  or moving away.
* The signal reaches the receiver via a main path (red) and two secondary paths (blue and green). Reflections from the obstacles cause phase shifts of  $\pi$.
+
* The signal reaches the receiver via a main path (red) and two secondary paths (blue and green).  Reflections from the obstacles cause phase shifts of  $\pi$.
 
* ${\rm S}_2$  and  ${\rm S}_3$  are to be understood here as fictitious transmitters from whose position the angles of incidence  $\alpha_2$  and  $\alpha_3$  of the secondary paths can be determined.
 
* ${\rm S}_2$  and  ${\rm S}_3$  are to be understood here as fictitious transmitters from whose position the angles of incidence  $\alpha_2$  and  $\alpha_3$  of the secondary paths can be determined.
* Let the signal frequency be   $f_{\rm S}$, the angle of incidence   $\alpha$, the velocity  $v$  and the velocity of light  $c = 3 \cdot 10^8 \ \rm m/s$. Then, the Doppler frequency is
+
* Let the signal frequency be  $f_{\rm S}$,  the angle of incidence  $\alpha$, the velocity  $v$  and the velocity of light  $c = 3 \cdot 10^8 \ \rm m/s$.  Then, the Doppler frequency is
 
:$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha)
 
:$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 31: Line 31:
  
 
''Notes:''
 
''Notes:''
* This task belongs to chapter  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS–Kanalmodell]].
+
* This task belongs to chapter  [[Mobile_Communications/The_GWSSUS_Channel_Model| The GWSSUS Channel Model]].
*We focus especially on the   [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung#Gebr.C3.A4uchliches_Pfadverlustmodell| path-loss model]]  and the   [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#Dopplerfrequenz_und_deren_Verteilung| Doppler effect]].
+
*We also refer to the pages  [[Mobile_Communications/Distance_Dependent_Attenuation_and_Shading#Common_path_loss_model| Common path-loss model]]  and  [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution| Doppler frequency and its distribution]].
 
   
 
   
  
Line 39: Line 39:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{At first, consider only the Dirac function at&nbsp; $\tau = 0$&nbsp; and&nbsp; $f_{\rm D} = 100 \ \rm Hz$. Which statements apply to the recipient?
+
{At first, consider only the Dirac function at&nbsp; $\tau = 0$&nbsp; and&nbsp; $f_{\rm D} = 100 \ \rm Hz$.&nbsp; Which statements apply to the receiver?
 
|type="()"}
 
|type="()"}
 
- The receiver is standing.
 
- The receiver is standing.
Line 58: Line 58:
 
{What statements apply to the green path?
 
{What statements apply to the green path?
 
|type="[]"}
 
|type="[]"}
+ For this,&nbsp; $\tau_0 = 1 \ \ \rm &micro; s$&nbsp; and&nbsp; $f_{\rm D} = \, &ndash;50 \ \ \rm Hz$.
+
+ We have $\tau_0 = 1 \ \rm &micro; s$&nbsp; and&nbsp; $f_{\rm D} = -50 \ \rm Hz$.
- The angle&nbsp; $\alpha_3$&nbsp; (see graphic) is&nbsp; $60^\circ$.
+
- The angle&nbsp; $\alpha_3$&nbsp; (see graph) is&nbsp; $60^\circ$.
 
+ The angle&nbsp; $\alpha_3$&nbsp; is&nbsp; $240^\circ$.
 
+ The angle&nbsp; $\alpha_3$&nbsp; is&nbsp; $240^\circ$.
  
{What are the relations between the two side paths?
+
{Which of the following relations hold between the two side paths?
 
|type="[]"}
 
|type="[]"}
+ It applies&nbsp; $d_3 = d_2$.
+
+ $d_3 = d_2$.
+ It is&nbsp; $k_3 = k_2$.
+
+ $k_3 = k_2$.
+ It is&nbsp; $\tau_3 = \tau_2$.
+
+ $\tau_3 = \tau_2$.
  
{What is the difference in time&nbsp; $\Delta d = d_2 - d_1$?
+
{What is the difference&nbsp; $\Delta d = d_2 - d_1$&nbsp;  in time?
 
|type="{}"}
 
|type="{}"}
$\ Delta d \ = \ ${ 300 3% } $\ \ \rm m$
+
$\Delta d \ = \ ${ 300 3% } $\ \ \rm m$
  
 
{What is the relationship between&nbsp; $d_2$&nbsp; and&nbsp; $d_1$?
 
{What is the relationship between&nbsp; $d_2$&nbsp; and&nbsp; $d_1$?
Line 76: Line 76:
 
$d_2/d_1 \ = \ ${ 1,414 3% }
 
$d_2/d_1 \ = \ ${ 1,414 3% }
  
{Indicate the distances&nbsp; $d_1$&nbsp; and&nbsp; $d_2$&nbsp;.
+
{Find the distances&nbsp; $d_1$&nbsp; and&nbsp; $d_2$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$d_1 \ = \ ${724 3% } $\ \ \rm m$
+
$d_1 \ = \ ${ 724 3% } $\ \rm m$
$d_2 \ = \ ${ 1024 3% } $\ \ \rm m$
+
$d_2 \ = \ ${ 1024 3% } $\ \rm m$
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The Doppler frequency is positive for $\tau_0$. This means that the receiver is moving towards the transmitter &nbsp; &#8658; &nbsp; <u>statement 2</u>.
+
'''(1)'''&nbsp; The Doppler frequency is positive for&nbsp; $\tau_0$.&nbsp; This means that the receiver is moving towards the transmitter &nbsp; &#8658; &nbsp; <u>solution 2</u> is correct.
  
  
'''(2)'''&nbsp; The equation for the Doppler frequency is general or for the angle $\alpha = 0$.
+
'''(2)'''&nbsp; The equation for the Doppler frequency is
 
:$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha)
 
:$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha)
  \hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}.$$
+
  \hspace{0.05cm}.$$
 +
*If the angle of incidence is&nbsp; $\alpha=0$, then the Doppler frequency is
 +
:$$f_{\rm D}=\frac{v}{c}\cdot f_{\rm S}.$$
  
*This is what you get for speed:
+
*In this case the speed of the receiver is
:$$v = \frac{f_{\rm D}}}{f_{\rm S} \cdot c = \frac{10^2\,{\rm Hz}}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}
+
:$$v = \frac{f_{\rm D}}{f_{\rm S}} \cdot c = \frac{10^2\,{\rm Hz}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}
   \hspace{0.1cm} \underline {= 54 \,{\rm km/h}  
+
   \hspace{0.1cm} \underline {= 54 \,{\rm km/h}}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Correct are the <u>solutions 1 and 4</u>:
+
'''(3)'''&nbsp; <u>Solutions 1 and 4</u> are correct:
*The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$ comes from the blue path, because the receiver somehow moves towards the virtual transmitter ${\rm S}_2$ (at the reflection point), although not in a direct direction.  
+
*The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$&nbsp; comes from the blue path, because the receiver moves towards the virtual transmitter&nbsp; ${\rm S}_2$ (i.e., towards the reflection point), although not directly.&nbsp;
*The angle $\alpha_2$ between the direction of movement and the connecting line ${\rm S_2 &ndash; E}$ is $60^\circ$:
+
*In other words:&nbsp; The movement of the receiver <b>reduces</b> the blue path's length.
:$$\cos(\alpha_2) = \frac{f_{\rm D}}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
+
*The angle&nbsp; $\alpha_2$&nbsp; between the direction of movement and the connecting line&nbsp; ${\rm S_2 &ndash; E}$&nbsp; is&nbsp; $60^\circ$:
 +
:$$\cos(\alpha_2) = \frac{f_{\rm D}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
 
   \hspace{0.1cm} \underline {= 60^{\circ} }  
 
   \hspace{0.1cm} \underline {= 60^{\circ} }  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Correct are the <u>statements 1 and 3</u>:  
+
'''(4)'''&nbsp; <u>Statements 1 and 3</u> are correct:&nbsp; From&nbsp; $f_{\rm D} = \, &ndash;50 \ \rm Hz$&nbsp; follows&nbsp; $\alpha_3 = \alpha_2 &plusmn; \pi$ &nbsp; &rArr; &nbsp; $\alpha_3 \ \underline {= 240^\circ}$.
*From $f_{\rm D} = \, &ndash;50 \ \rm Hz$ follows $\alpha_3 = \alpha_2 &plusmn; \pi$, so $\alpha_3 \ \underline {= 240^\circ}$.
 
  
  
  
 
'''(5)'''&nbsp; <u>All statements are correct</u>:  
 
'''(5)'''&nbsp; <u>All statements are correct</u>:  
*The two Dirac functions at $&plusmn; 50 \ \ \rm Hz$ have the same running time. For both durations $\tau_3 = \tau_2 = \tau_1 + \tau_0$ is valid.  
+
*The two Dirac functions at&nbsp; $&plusmn; 50 \ \ \rm Hz$&nbsp; have the same delay.&nbsp; We have&nbsp; $\tau_3 = \tau_2 = \tau_1 + \tau_0$.  
*From the same transit time, however, also follows&nbsp; $d_3 = d_2$&nbsp; and with the same length also the same damping factors.
+
*From the equality of the delays, however, it follows also&nbsp; $d_3 = d_2$.
 +
*As both paths have the same length, their damping factors are equal, too.
  
  
  
'''(6)'''&nbsp; The runtime difference is $\tau_0 = 1 \ \rm &micro; s$, as shown in the equation for $s(\tau_0, f_{\rm D})$.
+
'''(6)'''&nbsp; The delay difference is&nbsp; $\tau_0 = 1 \ \rm &micro; s$, as shown in the equation for&nbsp; $s(\tau_0, f_{\rm D})$.&nbsp; This gives the difference in length:  
* This gives the difference in length:  
 
 
:$$\Delta d = \tau_0 \cdot c = 10^{&ndash;6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$
 
:$$\Delta d = \tau_0 \cdot c = 10^{&ndash;6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$
  
  
 +
'''(7)'''&nbsp; The path loss exponent was assumed to be&nbsp; $\gamma = 2$&nbsp; for this task.
 +
*Then&nbsp; $k_1 = K/d_1$&nbsp; and&nbsp; $k_2 = K/d_2$.&nbsp; The constant&nbsp; $K$&nbsp; is only an auxiliary variable that does not need to be considered further.
  
'''(7)'''&nbsp; The path loss exponent was assumed to be $\gamma = 2$ for this task.  
+
*The minus sign takes into account the&nbsp; $180^\circ$&nbsp; phase rotation on the secondary paths.  
*Then $k_1 = K/d_1$ and $k_2 = K/d_2$.  
+
*From the weights of the Dirac functions one can read&nbsp; $k_1 = \sqrt{0.5}$&nbsp; and&nbsp; $k_2 = -0.5$.&nbsp; Therefore:
  
*The minus sign takes into account the $180^\circ$&ndash;phase rotation on the secondary paths.
+
:$$\frac{d_2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2}
*From the weights of the Dirac functions one can read $k_1 = \sqrt{0.5}$ and $k_2 = -0.5$. From this follows:
+
   \hspace{0.15cm} \underline {= 1.414}  
:$$\frac{\2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2}
 
   \hspace{0.15cm} \underline {= 1,414}  
 
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
 
*The constant $K$ is only an auxiliary variable that does not need to be considered further.
 
 
  
  
'''(8)'''&nbsp; Aus&nbsp; $d_2/d_1 = 2^{-0.5}$&nbsp; and&nbsp; $\Delta d = d_2 \, - d_1 = 300 \ \rm m$&nbsp; finally follows:
+
'''(8)'''&nbsp; From &nbsp; $d_2/d_1 = 2^{-0.5}$&nbsp; and&nbsp; $\Delta d = d_2 \, - d_1 = 300 \ \rm m$&nbsp; finally follows:
 
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
   d_1 = \frac{300\,{\rm m}}}{\sqrt{2} - 1}  \hspace{0.15cm} \underline {= 724\,{\rm m}}  
+
   d_1 = \frac{300\,{\rm m}}{\sqrt{2} - 1}  \hspace{0.15cm} \underline {= 724\,{\rm m}}  
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}}
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}}
 
   \hspace{0.05cm}. $$
 
   \hspace{0.05cm}. $$
Line 143: Line 142:
  
  
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]

Latest revision as of 13:38, 23 March 2021

Mobile radio scenario with three paths

In  Exercise 2.5, a delay–Doppler function (or scatter function) was given.  From this, you should calculate and interpret the other system functions.  The given scatter function  $s(\tau_0, f_{\rm D})$  was

$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\tau_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz}) \hspace{0.05cm}.$$


Note:   In our learning tutorial,  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  is also identified with  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$.

Here we have replaced the delay variable  $\tau$  with  $\tau_0$ .  The new variable  $\tau_0$  describes the difference between the delay of a path and the delay  $\tau_1$  of the main path.  The main path is thus identified in the above equation by  $\tau_0 = 0$.

Now, we try to find a mobile radio scenario in which this scatter function would actually occur.  The basic structure is sketched above as a top view, and the following hold:

  • A single frequency is transmitted:  $f_{\rm S} = 2 \ \rm GHz$.
  • The mobile receiver  $\rm (E)$  is represented here by a yellow dot.  It is not known whether the vehicle is stationary, moving towards the transmitter  $\rm (S)$  or moving away.
  • The signal reaches the receiver via a main path (red) and two secondary paths (blue and green).  Reflections from the obstacles cause phase shifts of  $\pi$.
  • ${\rm S}_2$  and  ${\rm S}_3$  are to be understood here as fictitious transmitters from whose position the angles of incidence  $\alpha_2$  and  $\alpha_3$  of the secondary paths can be determined.
  • Let the signal frequency be  $f_{\rm S}$,  the angle of incidence  $\alpha$, the velocity  $v$  and the velocity of light  $c = 3 \cdot 10^8 \ \rm m/s$.  Then, the Doppler frequency is
$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha) \hspace{0.05cm}.$$
  • The damping factors  $k_1$,  $k_2$  and  $k_3$  are inversely proportional to the path lengths  $d_1$,  $d_2$  and  $d_3$. This corresponds to the path loss exponent  $\gamma = 2$.
  • This means:   The signal power decreases quadratically with distance  $d$  and accordingly the signal amplitude decreases linearly with  $d$.




Notes:



Questionnaire

1

At first, consider only the Dirac function at  $\tau = 0$  and  $f_{\rm D} = 100 \ \rm Hz$.  Which statements apply to the receiver?

The receiver is standing.
The receiver moves directly towards the transmitter.
The receiver moves away in the opposite direction to the transmitter.

2

What is the vehicle speed?

$v \ = \ $

$\ \ \rm km/h$

3

Which statements apply to the Dirac at  $\tau_0 = 1 \ \ \rm µ s$  and  $f_{\rm D} = +50 \ \ \rm Hz$?

This Dirac comes from the blue path.
This Dirac comes from the green path.
The angle  is  $30^\circ$.
The angle  is  $60^\circ$.

4

What statements apply to the green path?

We have $\tau_0 = 1 \ \rm µ s$  and  $f_{\rm D} = -50 \ \rm Hz$.
The angle  $\alpha_3$  (see graph) is  $60^\circ$.
The angle  $\alpha_3$  is  $240^\circ$.

5

Which of the following relations hold between the two side paths?

$d_3 = d_2$.
$k_3 = k_2$.
$\tau_3 = \tau_2$.

6

What is the difference  $\Delta d = d_2 - d_1$  in time?

$\Delta d \ = \ $

$\ \ \rm m$

7

What is the relationship between  $d_2$  and  $d_1$?

$d_2/d_1 \ = \ $

8

Find the distances  $d_1$  and  $d_2$ .

$d_1 \ = \ $

$\ \rm m$
$d_2 \ = \ $

$\ \rm m$


Solution

(1)  The Doppler frequency is positive for  $\tau_0$.  This means that the receiver is moving towards the transmitter   ⇒   solution 2 is correct.


(2)  The equation for the Doppler frequency is

$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha) \hspace{0.05cm}.$$
  • If the angle of incidence is  $\alpha=0$, then the Doppler frequency is
$$f_{\rm D}=\frac{v}{c}\cdot f_{\rm S}.$$
  • In this case the speed of the receiver is
$$v = \frac{f_{\rm D}}{f_{\rm S}} \cdot c = \frac{10^2\,{\rm Hz}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s} \hspace{0.1cm} \underline {= 54 \,{\rm km/h}} \hspace{0.05cm}.$$


(3)  Solutions 1 and 4 are correct:

  • The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$  comes from the blue path, because the receiver moves towards the virtual transmitter  ${\rm S}_2$ (i.e., towards the reflection point), although not directly. 
  • In other words:  The movement of the receiver reduces the blue path's length.
  • The angle  $\alpha_2$  between the direction of movement and the connecting line  ${\rm S_2 – E}$  is  $60^\circ$:
$$\cos(\alpha_2) = \frac{f_{\rm D}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2 \hspace{0.1cm} \underline {= 60^{\circ} } \hspace{0.05cm}.$$


(4)  Statements 1 and 3 are correct:  From  $f_{\rm D} = \, –50 \ \rm Hz$  follows  $\alpha_3 = \alpha_2 ± \pi$   ⇒   $\alpha_3 \ \underline {= 240^\circ}$.


(5)  All statements are correct:

  • The two Dirac functions at  $± 50 \ \ \rm Hz$  have the same delay.  We have  $\tau_3 = \tau_2 = \tau_1 + \tau_0$.
  • From the equality of the delays, however, it follows also  $d_3 = d_2$.
  • As both paths have the same length, their damping factors are equal, too.


(6)  The delay difference is  $\tau_0 = 1 \ \rm µ s$, as shown in the equation for  $s(\tau_0, f_{\rm D})$.  This gives the difference in length:

$$\Delta d = \tau_0 \cdot c = 10^{–6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$


(7)  The path loss exponent was assumed to be  $\gamma = 2$  for this task.

  • Then  $k_1 = K/d_1$  and  $k_2 = K/d_2$.  The constant  $K$  is only an auxiliary variable that does not need to be considered further.
  • The minus sign takes into account the  $180^\circ$  phase rotation on the secondary paths.
  • From the weights of the Dirac functions one can read  $k_1 = \sqrt{0.5}$  and  $k_2 = -0.5$.  Therefore:
$$\frac{d_2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2} \hspace{0.15cm} \underline {= 1.414} \hspace{0.05cm}.$$


(8)  From   $d_2/d_1 = 2^{-0.5}$  and  $\Delta d = d_2 \, - d_1 = 300 \ \rm m$  finally follows:

$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_1 = \frac{300\,{\rm m}}{\sqrt{2} - 1} \hspace{0.15cm} \underline {= 724\,{\rm m}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}} \hspace{0.05cm}. $$