Difference between revisions of "Aufgaben:Exercise 2.1Z: Sum Signal"

From LNTwww
 
(34 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Allgemeine Beschreibung
+
{{quiz-Header|Buchseite=Signal Representation/General Description
 
}}
 
}}
  
[[File:P_ID319__Sig_Z_2_1.png|right|Summensignal ]]
+
[[File:P_ID319__Sig_Z_2_1.png|right|frame|Rectangular signal, triangular signal, sum signal]]
In der nebenstehenden Grafik sind die beiden periodischen Signale ${x(t)}$ und ${y(t)}$ dargestellt, aus denen das Summensignal ${s(t)}$ – im unteren Bild skizziert sowie das Differenzsignal ${d(t)}$ gebildet werden.
+
The adjacent diagram shows the periodic signals  ${x(t)}$  and  ${y(t)}$,  from which the sum   ${s(t)}$  sketched in the lower diagram and the difference  ${d(t)}$  are formed.
  
Weiterhin betrachten wir in dieser Aufgabe das Signal ${w(t)}$, das sich aus der Summe der beiden periodischen Signalen ${u(t)}$ und $v(t)$ ergibt. Die Grundfrequenzen der Signale seien
+
Furthermore, in this task we consider the signal  ${w(t)}$, which results from the sum of two periodic signals  ${u(t)}$  and  $v(t)$ .  The base frequencies of these signals are
  
 
:* $f_u = 998 \,\text{Hz},$
 
:* $f_u = 998 \,\text{Hz},$
  
:* $f_u = 1002 \,\text{Hz}.$
+
:* $f_v = 1002 \,\text{Hz}.$
  
Mehr ist von diesen Signalen ${u(t)}$ und $v(t)$ nicht bekannt.
+
That is all we know about the signals  ${u(t)}$  and  $v(t)$.
  
''Hinweise:''
 
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Allgemeine_Beschreibung|Allgemeine Beschreibung periodischer Signale]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*The exercise belongs to the chapter  [[Signal_Representation/General_Description|General description of periodic signals]].
 +
*With the interactive applet  [[Applets:Period_Duration_of_Periodic_Signals|Period Duration of Periodic Signals]]  the resulting period duration of two harmonic oscillations can be determined.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist Periodendauer $T_x$ und Grundfrequenz $f_x$ des Signals $\text{x(t)}$?
+
{What is the period duration&nbsp; $T_x$&nbsp; and the basic frequency&nbsp; $f_x$&nbsp; of the signal&nbsp; ${x(t)}$?
 
|type="{}"}
 
|type="{}"}
$f_x$ = { 1 3% } $\text{kHz}$
+
$f_x\ = \ $ { 1 3% } &nbsp; $\text{kHz}$
  
  
{Wie groß ist Periodendauer $T_y$ und Grundfrequenz $f_y$ des Signals $\text{y(t)}$?
+
{What is the period duration&nbsp; $T_y$&nbsp; and the basic frequency&nbsp; $f_y$&nbsp; of the signal&nbsp; ${y(t)}$?
 
|type="{}"}
 
|type="{}"}
$f_y$ = { 0.4 3% } $\text{kHz}$
+
$f_y\ = \ $ { 0.4 3% } &nbsp; $\text{kHz}$
  
  
{Bestimmen Sie die Grundfrequenz $f_s$ sowie die Periodendauer $T_s$ des Summensignals $\text{s(t)}$ und überprüfen Sie das Ergebnis anhand der Skizze.
+
{Determine the basic frequency&nbsp; $f_s$&nbsp; and the period duration&nbsp; $T_s$&nbsp; of the sum signal&nbsp; ${s(t)}$.&nbsp; <br>Verify your results with the help of the sketched signal.
 
|type="{}"}
 
|type="{}"}
$T_s$ = { 5 3% } $\text{ms}$
+
$T_s\ = \ $ { 5 3% } &nbsp; $\text{ms}$
  
  
{Welche Periodendauer $T_d$ weist das Differenzsignal $\text{d(t)}$ auf?
+
{What is the period duration&nbsp; $T_d$&nbsp; of the difference signal&nbsp; ${d(t)}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$T_d$ = { 5 3% } $\text{ms}$
+
$T_d\ = \ $ { 5 3% } &nbsp; $\text{ms}$
  
  
{Welche Periodendauer $T_w$ besitzt das Signal $\text{w(t)} = \text{u(t)} + \text{$\upsilon$(t)}$?
+
{What is the period duration&nbsp; $T_w$&nbsp; of the signal&nbsp; ${w(t)} = {u(t)} + v(t)$?
 
|type="{}"}
 
|type="{}"}
$T_w$ = { 500 3% } $\text{ms}$
+
$T_w\ = \ $ { 500 3% } &nbsp; $\text{ms}$
  
 +
</quiz>
  
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp;  The following applies to the rectangular signal:&nbsp; $T_x = 1 \,\text{ms}$  &nbsp; &rArr; &nbsp;
 +
:$$f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}.$$
  
</quiz>
+
'''(2)'''&nbsp;  The following applies to the triangular signal:&nbsp; $T_y = 2.5 \,\text{ms}$&nbsp; und&nbsp;
 +
:$$f_y \hspace{0.15cm}\underline{= 0.4\,  \text{kHz}}.$$
  
===Musterlösung===
+
'''(3)'''&nbsp; The basic frequency&nbsp; $f_s$&nbsp; of the sum signal&nbsp; $s(t)$&nbsp; is the greatest common divisor&nbsp; $f_x = 1 \,\text{kHz}$&nbsp; and&nbsp; $f_y = 0.4 \,\text{kHz}$.
{{ML-Kopf}}
+
[[File:P_ID320__Sig_Z_2_1_d_neu.png|right|frame|Difference&nbsp; $d(t) = x(t) - y(t)$]]
'''1.'''  Es gilt $T_x = 1 \text{ms}$ und $f_x \underline{= 1 \text{kHz}}$.
+
 +
*From this follows&nbsp; $f_s = 200 \,\text{Hz}$&nbsp; and the period duration&nbsp; $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$.
 +
* This is also evident from the graphic on the information page.
  
'''2.'''  Es gilt $T_y = 2.5 \text{ms}$ und $f_y \underline{= 0.4 \text{kHz}}$.
 
  
'''3.'''  Die Grundfrequenz $f_s$ ist der größte gemeinsame Teiler von $f_x = 1 \text{kHz}$ und $f_y = 0.4 \text{kHz}$. Daraus folgt $f_s = 200 \text{Hz}$ und die Periodendauer $T_s = 5 \text{ms}$, wie auch aus der grafischen Darstellung des Signals $\text{s(t)}$ hervorgeht.
+
'''(4)'''&nbsp; The period duration&nbsp; $T_d$&nbsp; does not change compared to the period duration&nbsp; $T_s$,&nbsp; if the signal&nbsp; ${y(t)}$&nbsp; is not added but subtracted: &nbsp; &nbsp;
 +
:$$T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}.$$
  
'''4.'''  Die Periodendauer $T_d$ ändert sich gegenüber der Periodendauer $T_s$ nicht, wenn das Signal $\text{y(t)}$ nicht addiert, sondern subtrahiert wird: $T_d = T_s = 5 \text{ms}$.
+
'''(5)'''&nbsp; The greatest common divisor of&nbsp; $f_u = 998 \,\text{Hz}$&nbsp; and&nbsp; $f_{v} = 1002 \,\text{Hz}$&nbsp; is&nbsp; $f_w = 2 \,\text{Hz}$.&nbsp; The inverse of this gives the period duration&nbsp;  $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.
[[File:P_ID320__Sig_Z_2_1_d_neu.png|center|]]
 
'''5.'''  Der größte gemeinsame Teiler von $f_u = 0.998 \text{kHz}$ und $f_{\upsilon} = 1.002 \text{kHz}$ ist $f_w = 2 \text{Hz}$. Der Kehrwert hiervon ergibt die Periodendauer $T_w = 500 \text{ms}$.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.1 Description of Periodic Signals^]]

Latest revision as of 13:33, 12 April 2021

Rectangular signal, triangular signal, sum signal

The adjacent diagram shows the periodic signals  ${x(t)}$  and  ${y(t)}$,  from which the sum   ${s(t)}$  – sketched in the lower diagram – and the difference  ${d(t)}$  are formed.

Furthermore, in this task we consider the signal  ${w(t)}$, which results from the sum of two periodic signals  ${u(t)}$  and  $v(t)$ .  The base frequencies of these signals are

  • $f_u = 998 \,\text{Hz},$
  • $f_v = 1002 \,\text{Hz}.$

That is all we know about the signals  ${u(t)}$  and  $v(t)$.




Hints:


Questions

1

What is the period duration  $T_x$  and the basic frequency  $f_x$  of the signal  ${x(t)}$?

$f_x\ = \ $

  $\text{kHz}$

2

What is the period duration  $T_y$  and the basic frequency  $f_y$  of the signal  ${y(t)}$?

$f_y\ = \ $

  $\text{kHz}$

3

Determine the basic frequency  $f_s$  and the period duration  $T_s$  of the sum signal  ${s(t)}$. 
Verify your results with the help of the sketched signal.

$T_s\ = \ $

  $\text{ms}$

4

What is the period duration  $T_d$  of the difference signal  ${d(t)}$ ?

$T_d\ = \ $

  $\text{ms}$

5

What is the period duration  $T_w$  of the signal  ${w(t)} = {u(t)} + v(t)$?

$T_w\ = \ $

  $\text{ms}$


Solution

(1)  The following applies to the rectangular signal:  $T_x = 1 \,\text{ms}$   ⇒  

$$f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}.$$

(2)  The following applies to the triangular signal:  $T_y = 2.5 \,\text{ms}$  und 

$$f_y \hspace{0.15cm}\underline{= 0.4\, \text{kHz}}.$$

(3)  The basic frequency  $f_s$  of the sum signal  $s(t)$  is the greatest common divisor  $f_x = 1 \,\text{kHz}$  and  $f_y = 0.4 \,\text{kHz}$.

Difference  $d(t) = x(t) - y(t)$
  • From this follows  $f_s = 200 \,\text{Hz}$  and the period duration  $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$.
  • This is also evident from the graphic on the information page.


(4)  The period duration  $T_d$  does not change compared to the period duration  $T_s$,  if the signal  ${y(t)}$  is not added but subtracted:    

$$T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}.$$

(5)  The greatest common divisor of  $f_u = 998 \,\text{Hz}$  and  $f_{v} = 1002 \,\text{Hz}$  is  $f_w = 2 \,\text{Hz}$.  The inverse of this gives the period duration  $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.