Difference between revisions of "Aufgaben:Exercise 5.2: Inverse Discrete Fourier Transform"
(27 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Signal_Representation/Discrete_Fourier_Transform_(DFT) |
}} | }} | ||
− | [[File:P_ID1138__Sig_A_5_2.png|250px|right| | + | [[File:P_ID1138__Sig_A_5_2.png|250px|right|frame|Five different sets for the spectral coefficients $D(\mu)$]] |
− | + | With the '''Discrete Fourier Transform''' $\rm (DFT)$, | |
+ | *the $N$ spectral range coefficients $D(\mu)$ are calculated | ||
+ | |||
+ | *from the $N$ time coefficients $d(\nu)$ ⇒ samples of the continuous-time signal $x(t)$. | ||
+ | |||
+ | |||
+ | With $\nu = 0$, ... , $N – 1$ and $\mu = 0$, ... , $N – 1$ holds: | ||
− | $$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} | + | :$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} |
− | d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0. | + | d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ |
− | + | Here $w$ denotes the complex rotation factor: | |
− | $$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} | + | :$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} |
= \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) | = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | For the '''Inverse Discrete Fourier Transform''' $\rm (DFT)$ ⇒ "inverse function" of the DFT, the following applies accordingly: | |
− | $$d(\nu) = \sum_{\mu = 0 }^{N-1} | + | :$$d(\nu) = \sum_{\mu = 0 }^{N-1} |
− | D(\mu) \cdot {w}^{-\nu \hspace{0. | + | D(\mu) \cdot {w}^{-\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ |
+ | |||
+ | In this task, the time coefficients $d(\nu)$ are to be determined for various sequences $D(\mu)$ (which are labelled $\rm A$, ... , $\rm E$ in the table above). Thus, $N = 8$ always applies. | ||
+ | |||
+ | |||
− | |||
− | |||
− | |||
− | === | + | |
+ | |||
+ | |||
+ | ''Hints:'' | ||
+ | *This task belongs to the chapter [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transformation (DFT)]]. | ||
+ | |||
+ | *The topic dealt with here is also dealt with in the interactive applet [[Applets:Discrete_Fouriertransform_and_Inverse|Discrete Fourier Transform and Inverse]]. | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What are the time coefficients $d(\nu)$ for the $D(\mu)$ values of column $\rm A$? |
|type="{}"} | |type="{}"} | ||
− | + | $d(0)\ = \ $ { 1 3% } | |
− | + | $d(1)\ = \ $ { 1 3% } | |
− | { | + | {What are the time coefficients $d(ν)$ for the $D(\mu)$ values of column $\rm B$? |
|type="{}"} | |type="{}"} | ||
− | + | $d(0)\ = \ $ { 1 3% } | |
− | + | $d(1)\ = \ $ { 0.707 3% } | |
− | { | + | {What are the time coefficients $d(ν)$ for the $D(\mu)$ values of column $\rm C$? |
|type="{}"} | |type="{}"} | ||
− | + | $d(0)\ = \ $ { 1 3% } | |
− | + | $d(1)\ = \ $ { 0. } | |
− | { | + | {What are the time coefficients $d(ν)$ for the $D(\mu)$ values of column $\rm D$? |
|type="{}"} | |type="{}"} | ||
− | + | $d(0)\ = \ ${ 1 3% } | |
− | + | $d(1)\ = \ $ { -1.03--0.97 } | |
− | { | + | {What are the time coefficients $d(ν)$ for the $D(\mu)$ values of column $\rm E$? |
|type="{}"} | |type="{}"} | ||
− | + | $d(0)\ = \ $ { 2 3% } | |
− | + | $d(1)\ = \ $ { 0. } | |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' From the IDFT equation, with $D(\mu) = 0$ for $\mu \ne 0$: |
− | $$d(\nu) = D(0) \cdot w^0 = D(0) =1\hspace{0.5cm}(0 \le \nu \le 7)$$ | + | :$$d(\nu) = D(0) \cdot w^0 = D(0) =1\hspace{0.5cm}(0 \le \nu \le 7)\ \hspace{0.5cm} \Rightarrow\hspace{0.5cm}\hspace{0.15 cm}\underline{d(0) = d(1) = 1}.$$ |
− | + | *This parameter set describes the discrete form of the Fourier correspondence of the DC signal: | |
− | |||
− | |||
− | $$x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | + | :$$x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} |
X(f) = {\delta}(f) \hspace{0.05cm}.$$ | X(f) = {\delta}(f) \hspace{0.05cm}.$$ | ||
− | '''2 | + | |
+ | '''(2)''' All spectral coefficients are zero except $D_1 = D_7 = 0.5$. It follows for $0 ≤ ν ≤ 7$: | ||
− | $$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} | + | :$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *However, due to periodicity, also holds: | |
− | $$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right) | + | :$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) = {1}/{\sqrt{2}} \approx 0.707} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *It is therefore the discrete-time equivalent of | |
− | $$x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | + | :$$x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} |
− | X(f) = | + | X(f) = {1}/{2} \cdot {\delta}(f + f_{\rm A}) + {1}/{2} \cdot {\delta}(f - f_{\rm A}) \hspace{0.05cm},$$ |
− | + | :where $f_{\rm A}$ denotes the smallest frequency that can be represented in the DFT. | |
− | '''3 | + | |
+ | '''(3)''' Compared to subtask '''(2)''', the oscillation frequency is now twice as large, namely $2 f_{\rm A}$ instead of $f_{\rm A}$: | ||
− | $$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} | + | :$$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} |
− | X(f) = | + | X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$ |
− | + | *Thus the sequence $\langle \hspace{0.1cm}d(ν)\hspace{0.1cm}\rangle $ describes two periods of the cosine oscillation, and it holds for $0 ≤ ν ≤ 7$: | |
− | $$ d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right) | + | :$$ d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''4 | + | |
+ | '''(4)''' By further doubling the cosine frequency to $4 f_{\rm A}$ one finally arrives at the continuous-time Fourier correspondence | ||
− | $$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) | + | :$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) |
\hspace{0.05cm}$$ | \hspace{0.05cm}$$ | ||
− | + | :and thus to the time coefficients | |
− | $$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7) \hspace{0.15 cm}\underline{= -1} | + | :$$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7) \hspace{0.15 cm}\underline{= -1} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *Note that here the two Dirac functions coincide in the discrete-time representation due to periodicity. | |
+ | *The coefficients $D (+4) = 0.5$ and $D (-4) = 0.5$ together give $D (4) = 1$. | ||
+ | |||
+ | |||
− | '''5 | + | '''(5)''' The Discrete Fourier Transform is also linear. Therefore, the superposition principle is still applicable: |
+ | *The coefficients $D(\mu )$ from column $\rm E$ result as the sums of columns $\rm A$ and $\rm D$. | ||
+ | *Therefore, the alternating sequence $\langle \hspace{0.1cm}d(ν) \hspace{0.1cm}\rangle $ becomes the sequence shifted up by $1$ according to subtask '''(4)''': | ||
− | $$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7) = 0} | + | :$$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7) = 0} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^5.2 Discrete Fourier Transform^]] |
Latest revision as of 15:38, 16 May 2021
With the Discrete Fourier Transform $\rm (DFT)$,
- the $N$ spectral range coefficients $D(\mu)$ are calculated
- from the $N$ time coefficients $d(\nu)$ ⇒ samples of the continuous-time signal $x(t)$.
With $\nu = 0$, ... , $N – 1$ and $\mu = 0$, ... , $N – 1$ holds:
- $$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
Here $w$ denotes the complex rotation factor:
- $$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$
For the Inverse Discrete Fourier Transform $\rm (DFT)$ ⇒ "inverse function" of the DFT, the following applies accordingly:
- $$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
In this task, the time coefficients $d(\nu)$ are to be determined for various sequences $D(\mu)$ (which are labelled $\rm A$, ... , $\rm E$ in the table above). Thus, $N = 8$ always applies.
Hints:
- This task belongs to the chapter Discrete Fourier Transformation (DFT).
- The topic dealt with here is also dealt with in the interactive applet Discrete Fourier Transform and Inverse.
Questions
Solution
- $$d(\nu) = D(0) \cdot w^0 = D(0) =1\hspace{0.5cm}(0 \le \nu \le 7)\ \hspace{0.5cm} \Rightarrow\hspace{0.5cm}\hspace{0.15 cm}\underline{d(0) = d(1) = 1}.$$
- This parameter set describes the discrete form of the Fourier correspondence of the DC signal:
- $$x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {\delta}(f) \hspace{0.05cm}.$$
(2) All spectral coefficients are zero except $D_1 = D_7 = 0.5$. It follows for $0 ≤ ν ≤ 7$:
- $$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} \hspace{0.05cm}.$$
- However, due to periodicity, also holds:
- $$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) = {1}/{\sqrt{2}} \approx 0.707} \hspace{0.05cm}.$$
- It is therefore the discrete-time equivalent of
- $$x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + f_{\rm A}) + {1}/{2} \cdot {\delta}(f - f_{\rm A}) \hspace{0.05cm},$$
- where $f_{\rm A}$ denotes the smallest frequency that can be represented in the DFT.
(3) Compared to subtask (2), the oscillation frequency is now twice as large, namely $2 f_{\rm A}$ instead of $f_{\rm A}$:
- $$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$
- Thus the sequence $\langle \hspace{0.1cm}d(ν)\hspace{0.1cm}\rangle $ describes two periods of the cosine oscillation, and it holds for $0 ≤ ν ≤ 7$:
- $$ d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0} \hspace{0.05cm}.$$
(4) By further doubling the cosine frequency to $4 f_{\rm A}$ one finally arrives at the continuous-time Fourier correspondence
- $$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) \hspace{0.05cm}$$
- and thus to the time coefficients
- $$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7) \hspace{0.15 cm}\underline{= -1} \hspace{0.05cm}.$$
- Note that here the two Dirac functions coincide in the discrete-time representation due to periodicity.
- The coefficients $D (+4) = 0.5$ and $D (-4) = 0.5$ together give $D (4) = 1$.
(5) The Discrete Fourier Transform is also linear. Therefore, the superposition principle is still applicable:
- The coefficients $D(\mu )$ from column $\rm E$ result as the sums of columns $\rm A$ and $\rm D$.
- Therefore, the alternating sequence $\langle \hspace{0.1cm}d(ν) \hspace{0.1cm}\rangle $ becomes the sequence shifted up by $1$ according to subtask (4):
- $$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7) = 0} \hspace{0.05cm}.$$