Difference between revisions of "Aufgaben:Exercise 5.2Z: DFT of a Triangular Pulse"

From LNTwww
 
(23 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Diskrete Fouriertransformation (DFT)
+
{{quiz-Header|Buchseite=Signal_Representation/Discrete_Fourier_Transform_(DFT)
 
}}
 
}}
  
[[File:P_ID1140__Sig_Z_5_2.png|right|DFT eines Dreieckimpulses]]
+
[[File:P_ID1140__Sig_Z_5_2.png|right|frame|Discretisation of a triangular pulse]]
Betrachtet wird der skizzierte Dreieckimpuls
+
Consider the sketched triangular pulse
 
:$$x(t) = \left\{ \begin{array}{l} A \cdot \left( 1 - {|t|}/{T} \right ) \\  
 
:$$x(t) = \left\{ \begin{array}{l} A \cdot \left( 1 - {|t|}/{T} \right ) \\  
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad  
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad  
\begin{array}{*{10}c}  {\rm{f\ddot{u}r}}   
+
\begin{array}{*{10}c}  {\rm{for}}   
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{10}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{10}c}
 
{\left| \hspace{0.005cm} t\hspace{0.05cm} \right| \le T,}  \\
 
{\left| \hspace{0.005cm} t\hspace{0.05cm} \right| \le T,}  \\
 
{\left|\hspace{0.005cm} t \hspace{0.05cm} \right| > T.}  \\
 
{\left|\hspace{0.005cm} t \hspace{0.05cm} \right| > T.}  \\
 
\end{array}$$
 
\end{array}$$
Die Signalparameter haben folgende Werte:
+
The signal parameters have the following values:
  
:* Amplitude $A = 4 \${\text{V}$,
+
* amplitude  $A = 4 \ \text{V}$,
  
:* äquivalente Impulsdauer $\Delta t = T = 1 \, \text{ms}$:
+
* equivalent pulse duration  $\Delta t = T = 1 \, \text{ms}$.
  
Das Spektrum $X(f)$ erhält man durch Anwendung des [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegrals]]:
 
:$$X(f) = A \cdot T \cdot {\rm si}^2(\pi f T)\hspace{0.05cm}.$$
 
  
Die Spektralfunktion soll nun durch eine ''Diskrete Fouriertransformation'' (DFT) mit $N = 8$ angenähert werden, wobei die $N$ Koeffizienten für den Zeitbereich  ⇒  $d(0), ... , d(7)$, der Grafik entnommen werden können.
+
The spectrum  $X(f)$  is obtained by applying  [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|the first Fourier Integral]]:
 +
:$$X(f) = A \cdot T \cdot {\rm si}^2(\pi f T)\hspace{0.5cm}\text{with}\hspace{0.5cm}{\rm si}(x)=\sin(x)/x\hspace{0.05cm}.$$
  
Die dazugehörigen Spektralkoeffizienten $D(0), ... , D(7)$ sind in dieser Aufgabe zu ermitteln, wobei für die Indizes $\mu = 0, ... , N–1$ gilt:
+
The spectral function is now to be approximated by a   Discrete Fourier Transform  $\rm (DFT)$   with  $N = 8$ , where the   $N$  coefficients for the time domain   ⇒   $d(0)$, ... , $d(7)$  can be taken from the graph.
 +
 
 +
The corresponding spectral coefficients  $D(0)$, ... ,  $D(7)$  are to be determined.   For the indices  $\mu = 0$, ... , $N–1$  applies:
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
+
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
Bezeichnet man den Abstand zweier Abtastwerte im Zeitbereich mit $T_{\rm A}$ und den entsprechenden Frequenzabstand zweier Linien mit $f_{\rm A}$, so gilt folgender Zusammenhang:
+
 
 +
If we denote the distance between two samples in the time domain by  $T_{\rm A}$  and the corresponding frequency distance between two lines by $f_{\rm A}$, following relationship applies:
 
:$$N \cdot f_{\rm A} \cdot T_{\rm A} = 1 \hspace{0.05cm}.$$
 
:$$N \cdot f_{\rm A} \cdot T_{\rm A} = 1 \hspace{0.05cm}.$$
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation (DFT)]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Zu der hier behandelten Thematik gibt es auch ein Interaktionsmodul:
 
:[[Diskrete Fouriertransformation]]
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This task belongs to the chapter  [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transformation (DFT)]].
 +
 +
*The topic dealt with here is also dealt with in the interactive applet  [[Applets:Discrete_Fouriertransform_and_Inverse|Discrete Fourier Transform and Inverse]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Question===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Zeitkoeffizienten an. Wie groß sind $d(0)$, $d(3)$ und $d(6)$?
+
{Give the time coefficients. What are the values of&nbsp; $d(0)$,&nbsp; $d(3)$&nbsp; and&nbsp; $d(6)$?
 
|type="{}"}
 
|type="{}"}
$d(0)$ &nbsp;= { 4 3% } &nbsp;$\text{V}$
+
$d(0)\ = \ $ { 4 3% } &nbsp;$\text{V}$
$d(3)$ &nbsp;= { 1 3% } &nbsp;$\text{V}$
+
$d(3)\ = \ $ { 1 3% } &nbsp;$\text{V}$
$d(6)$ &nbsp;= { 2 3% } &nbsp;$\text{V}$
+
$d(6)\ = \ $ { 2 3% } &nbsp;$\text{V}$
  
  
{Wie groß ist der Abstand $T_{\rm A}$ zweier Zeitabtastwerte?
+
{What is the distance&nbsp; $T_{\rm A}$&nbsp; between two time samples?
 
|type="{}"}
 
|type="{}"}
$T_{\rm A}$ &nbsp;= { 0.25 3% } &nbsp;$\text{ms}$
+
$T_{\rm A}\ = \ ${ 0.25 3% } &nbsp;$\text{ms}$
  
  
{Wie groß ist der Abstand $f_{\rm A}$ zweier DFT–Frequenzabtastwerte?
+
{What is the distance&nbsp; $f_{\rm A}$&nbsp; between two DFT frequency samples?
 
|type="{}"}
 
|type="{}"}
$f_{\rm A}$ &nbsp;= { 0.5 3% } &nbsp;$\text{kHz}$
+
$f_{\rm A}\ = \ ${ 0.5 3% } &nbsp;$\text{kHz}$
  
  
{Berechnen Sie den Koeffizienten $D(0)$ und interpretieren Sie das Ergebnis.
+
{Calculate the coefficient&nbsp; $D(0)$&nbsp; and interpret the result.
 
|type="{}"}
 
|type="{}"}
$D(0)$ &nbsp;= { 2 3% } &nbsp;$\text{V}$
+
$D(0)\ = \ $ { 2 3% } &nbsp;$\text{V}$
  
  
{Berechnen Sie den Koeffizienten $D(2)$ und interpretieren Sie das Ergebnis, auch im Hinblick auf die Koeffizienten $D(4)$ und $D(6)$.
+
{Calculate the coefficient&nbsp; $D(2)$&nbsp; and interpret the result, also in terms of the coefficients&nbsp; $D(4)$&nbsp; and&nbsp; $D(6)$.
 
|type="{}"}
 
|type="{}"}
$D(2)$ &nbsp;= { 0. } &nbsp;$\text{V}$
+
$D(2)\ = \ ${ 0. } &nbsp;$\text{V}$
  
  
{Berechnen und interpretieren Sie den DFT–Koeffizienten $D(7)$.
+
{Calculate and interpret the DFT coefficient&nbsp; $D(7)$.
 
|type="{}"}
 
|type="{}"}
$D(7)$ &nbsp;= { 0.854 3% } &nbsp;$\text{V}$
+
$D(7)\ = \ $ { 0.854 3% } &nbsp;$\text{V}$
  
  
Line 74: Line 86:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Aus der Grafik ergeben sich mit $A = 4V$ folgende Werte:
+
'''(1)'''&nbsp; From the graph the following values result with&nbsp; $A = 4 \ {\rm V}$&nbsp;:
:$$\hspace{0.15 cm}\underline{d(0) = 4\,{\rm V}, \hspace{0.1cm}d(1) = d(7) = 3\,{\rm V}, \hspace{0.1cm}
+
:$${d(0) = 4\,{\rm V}, \hspace{0.1cm}d(1) = d(7) = 3\,{\rm V}, \hspace{0.1cm}
 
  \hspace{0.1cm}d(2) = d(6) = 2\,{\rm V}, \hspace{0.1cm}
 
  \hspace{0.1cm}d(2) = d(6) = 2\,{\rm V}, \hspace{0.1cm}
 
  \hspace{0.1cm}d(3) = d(5) = 1\,{\rm V}, \hspace{0.1cm}
 
  \hspace{0.1cm}d(3) = d(5) = 1\,{\rm V}, \hspace{0.1cm}
 
\hspace{0.1cm}d(4) = 0}\hspace{0.05cm}. $$
 
\hspace{0.1cm}d(4) = 0}\hspace{0.05cm}. $$
 +
:$$\Rightarrow \hspace{0.15 cm}\underline{d(0) = 4\,{\rm V}, \hspace{0.1cm}d(3) = 1\,{\rm V},
 +
\hspace{0.1cm}d(6) = 2\,{\rm V}. \hspace{0.1cm}}
 +
\hspace{0.05cm} $$
 +
 +
 +
'''(2)'''&nbsp; According to the diagram&nbsp; $T_{\rm A} = T/4$.
 +
*With&nbsp; $T = 1 \ \text{ms}$&nbsp; one obtains&nbsp; $\underline{T_{\rm A} = 0.25 \ \text{ms}}$.
  
'''2.'''  Entsprechend der Grafik gilt $T_A = T/4$. Mit $T = 1 \text{ms}$ erhält man somit $\underline{T_A = 0.25 \text{ms}}$.
 
  
'''3.''' Für die Abständen der Abtastwerte im Zeit– und Frequenzbereich gilt:
+
 
 +
'''(3)'''&nbsp; For the distances of the samples in the time and frequency domain applies:
 
:$$N \cdot f_{\rm A} \cdot T_{\rm A} = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm
 
:$$N \cdot f_{\rm A} \cdot T_{\rm A} = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm
 
  A}= \frac{1}{ 8 \cdot 0.25\, {\rm ms}}\hspace{0.15 cm}\underline{= 0.5\, {\rm kHz}}\hspace{0.05cm}.$$
 
  A}= \frac{1}{ 8 \cdot 0.25\, {\rm ms}}\hspace{0.15 cm}\underline{= 0.5\, {\rm kHz}}\hspace{0.05cm}.$$
  
'''4.''' Mit $N = 8$ und $\mu = 0$ folgt aus der DFT–Gleichung
+
 
 +
'''(4)'''&nbsp; With&nbsp; $N = 8$&nbsp; and&nbsp; $\mu = 0$&nbsp;, it follows from the DFT equation:
 
:$$D(0) =  \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
 
:$$D(0) =  \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
 
  d(\nu) = \frac{1\,{\rm V}}{8}\cdot (4+3+2+1+0+1+2+3)\hspace{0.15 cm}\underline{= 2 \,{\rm V}}\hspace{0.05cm}.$$
 
  d(\nu) = \frac{1\,{\rm V}}{8}\cdot (4+3+2+1+0+1+2+3)\hspace{0.15 cm}\underline{= 2 \,{\rm V}}\hspace{0.05cm}.$$
Der DFT–Wert $D(0)$ beschreibt den Spektralwert bei $f = 0$, wobei folgender Zusammenhang gilt:
+
*The DFT value $D(0)$ describes the spectral value at&nbsp; $f = 0$, where the following relation holds:
 
:$$X(f=0) =  \frac{D(0)}{f_{\rm A}}= \frac{ 2\,{\rm V}}{0.5\,{\rm kHz}}= 4 \cdot 10^{-3}\,{\rm V/Hz}\hspace{0.05cm}.$$
 
:$$X(f=0) =  \frac{D(0)}{f_{\rm A}}= \frac{ 2\,{\rm V}}{0.5\,{\rm kHz}}= 4 \cdot 10^{-3}\,{\rm V/Hz}\hspace{0.05cm}.$$
Dieser Wert stimmt mit dem theoretischen Wert $A \cdot T$ überein.
+
*This value agrees with the theoretical value &nbsp;  $(A \cdot T)$&nbsp;.
  
'''5.''' Mit $N = 8$ und $\mu = 2$ erhält man:
+
 
 +
 
 +
'''(5)'''&nbsp; With&nbsp; $N = 8$&nbsp; and&nbsp; $\mu = 2$&nbsp; we obtain:
 
:$$D(2)  =  \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
 
:$$D(2)  =  \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
 
  d(\nu)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} =
 
  d(\nu)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} =
 
   \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
 
   \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
  d(\nu)\cdot (-{\rm j})^{\nu} = \\
+
  d(\nu)\cdot (-{\rm j})^{\nu} \hspace{0.3cm}
  = \frac{1\,{\rm V}}{8}\cdot (4-3\cdot{\rm j}-2+{\rm j}-{\rm j}-2+3\cdot{\rm j})\hspace{0.15 cm}\underline{= 0}\hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm} =   \frac{1\,{\rm V}}{8}\cdot (4-3\cdot{\rm j}-2+{\rm j}-{\rm j}-2+3\cdot{\rm j})\hspace{0.15 cm}\underline{= 0}\hspace{0.05cm}.$$
Dieses Ergebnis hätte man auch ohne Rechnung vorhersagen können. Die DFT-Koeffizienten $D(\mu)$ sind gleichzeitig die Fourierkoeffizienten der im Abstand $T_P = 2T$ periodifizierten Funktion $x_{Per}(t)$. Diese ist in der Grafik auf der Angabenseite gestrichelt eingezeichnet. Aufgrund von Symmetrieeigenschaften sind aber alle geradzahligen Fourierkoeffizienten gleich $0$. Das heißt: <u>Auch $\underline{D(4)}$ und $\underline{D(6)}$ sind hier $0$</u>.
+
This result could have been predicted without calculation:
 +
*The DFT coefficients&nbsp; $D(\mu)$&nbsp; are at the same time the Fourier coefficients of the function&nbsp; $x_{\rm Per}(t)$&nbsp; periodised at the distance&nbsp; $T_{\rm P} = 2T$. <br>This is shown as a dashed line in the graph on the information page.
 +
*Due to symmetry properties, however, all even Fourier coefficients of the function&nbsp; $x_{\rm Per}(t)$&nbsp; are equal to zero &nbsp; &rArr; &nbsp; $D(4)\hspace{0.15cm}\underline{=0},$ &nbsp;  $D(6)\hspace{0.15cm}\underline{=0}$.
  
'''6.''' Der Koeffizient $D(7)$ beschreibt die periodifizierte Spektralfunktion bei der Frequenz $f = 7 \cdot f_A$. Aufgrund der Periodizität und von Symmetrieeigenschaft gilt:
+
 
 +
 
 +
'''(6)'''&nbsp; The coefficient&nbsp; $D(7)$&nbsp; describes the periodised spectral function at the frequency&nbsp; $f = 7 \cdot f_{\rm A}$.&nbsp; Due to periodicity and symmetry property holds:
 
:$$D(7) = D(-1) = D^{\star}(1) \hspace{0.05cm}.$$
 
:$$D(7) = D(-1) = D^{\star}(1) \hspace{0.05cm}.$$
Vorzugsweise berechnen wir diesen DFT–Koeffizienten:
+
Preferably, we calculate this DFT coefficient:
 
:$$D(1)  =  \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
 
:$$D(1)  =  \frac{1}{8}\cdot \sum_{\nu = 0 }^{7}
 
  d(\nu)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} =
 
  d(\nu)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} =
   \frac{1\,{\rm V}}{8}\cdot \\  \cdot  \left(4 +3\cdot \frac{1 - {\rm j}}{\sqrt{2}}-2\cdot {\rm j}+ \frac{-1 - {\rm j}}{\sqrt{2}}-{\rm j}+
+
   \frac{1\,{\rm V}}{8}\cdot   \left(4 +3\cdot \frac{1 - {\rm j}}{\sqrt{2}}-2\cdot {\rm j}+ \frac{-1 - {\rm j}}{\sqrt{2}}-{\rm j}+
   \frac{-1 + {\rm j}}{\sqrt{2}}-{\rm j}+ 2\cdot {\rm j}+3\cdot \frac{1 - {\rm j}}{\sqrt{2}}\right)= \\
+
   \frac{-1 + {\rm j}}{\sqrt{2}}-{\rm j}+ 2\cdot {\rm j}+3\cdot \frac{1 - {\rm j}}{\sqrt{2}}\right)$$
  =  \frac{2 + \sqrt{2}}{4} \approx 0.854{\rm V}\hspace{0.05cm}.$$
+
:$$\Rightarrow \; \; D(1)  =  \frac{2 + \sqrt{2}}{4} \approx 0.854{\rm V}\hspace{0.05cm}.$$
Da $D(1)$ rein reell ist, gilt $\underline{D(7) = D(1) = 0.854 V}$. Daraus ergeben sich für die zugehörigen Werte der kontinuierlichen Spektralfunktion:
+
Since&nbsp; $D(1)$&nbsp; is purely real,&nbsp; $D(7) = D(1) \; \underline{= 0.854 \ {\rm V}}$.  
 +
 
 +
This gives for the corresponding values of the continuous spectral function:
 
:$$X(f=-f_{\rm A}) =  X(f=+f_{\rm A}) =\frac{D(1)}{f_{\rm A}}=  1.708 \cdot 10^{-3}\,{\rm V/Hz}\hspace{0.05cm}.$$
 
:$$X(f=-f_{\rm A}) =  X(f=+f_{\rm A}) =\frac{D(1)}{f_{\rm A}}=  1.708 \cdot 10^{-3}\,{\rm V/Hz}\hspace{0.05cm}.$$
Wegen der impliziten periodischen Fortsetzung durch die DFT stimmt der so berechnete Wert mit dem tatsächlichen Wert $4 \cdot A \cdot T/\pi^2 = 1.621 · 10^{-3}\text{ V/Hz}$ nicht exakt überein. Der relative Fehler beträgt somit ca. $5.3%$.
+
*Because of the implicit periodic continuation by the DFT, the value calculated in this way does not exactly match the actual value&nbsp; $(4 \cdot A \cdot T/\pi^2 = 1.621 · 10^{-3}\text{ V/Hz})$.
 +
*The relative error is approx.&nbsp; $5.3\%$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^5. Zeit- und frequenzdisktrete Signaldarstellung^]]
+
[[Category:Signal Representation: Exercises|^5.2 Discrete Fourier Transform^]]

Latest revision as of 16:59, 16 May 2021

Discretisation of a triangular pulse

Consider the sketched triangular pulse

$$x(t) = \left\{ \begin{array}{l} A \cdot \left( 1 - {|t|}/{T} \right ) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{10}c} {\left| \hspace{0.005cm} t\hspace{0.05cm} \right| \le T,} \\ {\left|\hspace{0.005cm} t \hspace{0.05cm} \right| > T.} \\ \end{array}$$

The signal parameters have the following values:

  • amplitude  $A = 4 \ \text{V}$,
  • equivalent pulse duration  $\Delta t = T = 1 \, \text{ms}$.


The spectrum  $X(f)$  is obtained by applying  the first Fourier Integral:

$$X(f) = A \cdot T \cdot {\rm si}^2(\pi f T)\hspace{0.5cm}\text{with}\hspace{0.5cm}{\rm si}(x)=\sin(x)/x\hspace{0.05cm}.$$

The spectral function is now to be approximated by a  Discrete Fourier Transform  $\rm (DFT)$  with  $N = 8$ , where the   $N$  coefficients for the time domain   ⇒   $d(0)$, ... , $d(7)$  can be taken from the graph.

The corresponding spectral coefficients  $D(0)$, ... ,  $D(7)$  are to be determined.  For the indices  $\mu = 0$, ... , $N–1$  applies:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

If we denote the distance between two samples in the time domain by  $T_{\rm A}$  and the corresponding frequency distance between two lines by $f_{\rm A}$, following relationship applies:

$$N \cdot f_{\rm A} \cdot T_{\rm A} = 1 \hspace{0.05cm}.$$




Hints:




Question

1

Give the time coefficients. What are the values of  $d(0)$,  $d(3)$  and  $d(6)$?

$d(0)\ = \ $

 $\text{V}$
$d(3)\ = \ $

 $\text{V}$
$d(6)\ = \ $

 $\text{V}$

2

What is the distance  $T_{\rm A}$  between two time samples?

$T_{\rm A}\ = \ $

 $\text{ms}$

3

What is the distance  $f_{\rm A}$  between two DFT frequency samples?

$f_{\rm A}\ = \ $

 $\text{kHz}$

4

Calculate the coefficient  $D(0)$  and interpret the result.

$D(0)\ = \ $

 $\text{V}$

5

Calculate the coefficient  $D(2)$  and interpret the result, also in terms of the coefficients  $D(4)$  and  $D(6)$.

$D(2)\ = \ $

 $\text{V}$

6

Calculate and interpret the DFT coefficient  $D(7)$.

$D(7)\ = \ $

 $\text{V}$


Solution

(1)  From the graph the following values result with  $A = 4 \ {\rm V}$ :

$${d(0) = 4\,{\rm V}, \hspace{0.1cm}d(1) = d(7) = 3\,{\rm V}, \hspace{0.1cm} \hspace{0.1cm}d(2) = d(6) = 2\,{\rm V}, \hspace{0.1cm} \hspace{0.1cm}d(3) = d(5) = 1\,{\rm V}, \hspace{0.1cm} \hspace{0.1cm}d(4) = 0}\hspace{0.05cm}. $$
$$\Rightarrow \hspace{0.15 cm}\underline{d(0) = 4\,{\rm V}, \hspace{0.1cm}d(3) = 1\,{\rm V}, \hspace{0.1cm}d(6) = 2\,{\rm V}. \hspace{0.1cm}} \hspace{0.05cm} $$


(2)  According to the diagram  $T_{\rm A} = T/4$.

  • With  $T = 1 \ \text{ms}$  one obtains  $\underline{T_{\rm A} = 0.25 \ \text{ms}}$.


(3)  For the distances of the samples in the time and frequency domain applies:

$$N \cdot f_{\rm A} \cdot T_{\rm A} = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A}= \frac{1}{ 8 \cdot 0.25\, {\rm ms}}\hspace{0.15 cm}\underline{= 0.5\, {\rm kHz}}\hspace{0.05cm}.$$


(4)  With  $N = 8$  and  $\mu = 0$ , it follows from the DFT equation:

$$D(0) = \frac{1}{8}\cdot \sum_{\nu = 0 }^{7} d(\nu) = \frac{1\,{\rm V}}{8}\cdot (4+3+2+1+0+1+2+3)\hspace{0.15 cm}\underline{= 2 \,{\rm V}}\hspace{0.05cm}.$$
  • The DFT value $D(0)$ describes the spectral value at  $f = 0$, where the following relation holds:
$$X(f=0) = \frac{D(0)}{f_{\rm A}}= \frac{ 2\,{\rm V}}{0.5\,{\rm kHz}}= 4 \cdot 10^{-3}\,{\rm V/Hz}\hspace{0.05cm}.$$
  • This value agrees with the theoretical value   $(A \cdot T)$ .


(5)  With  $N = 8$  and  $\mu = 2$  we obtain:

$$D(2) = \frac{1}{8}\cdot \sum_{\nu = 0 }^{7} d(\nu)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \frac{1}{8}\cdot \sum_{\nu = 0 }^{7} d(\nu)\cdot (-{\rm j})^{\nu} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} = \frac{1\,{\rm V}}{8}\cdot (4-3\cdot{\rm j}-2+{\rm j}-{\rm j}-2+3\cdot{\rm j})\hspace{0.15 cm}\underline{= 0}\hspace{0.05cm}.$$

This result could have been predicted without calculation:

  • The DFT coefficients  $D(\mu)$  are at the same time the Fourier coefficients of the function  $x_{\rm Per}(t)$  periodised at the distance  $T_{\rm P} = 2T$.
    This is shown as a dashed line in the graph on the information page.
  • Due to symmetry properties, however, all even Fourier coefficients of the function  $x_{\rm Per}(t)$  are equal to zero   ⇒   $D(4)\hspace{0.15cm}\underline{=0},$   $D(6)\hspace{0.15cm}\underline{=0}$.


(6)  The coefficient  $D(7)$  describes the periodised spectral function at the frequency  $f = 7 \cdot f_{\rm A}$.  Due to periodicity and symmetry property holds:

$$D(7) = D(-1) = D^{\star}(1) \hspace{0.05cm}.$$

Preferably, we calculate this DFT coefficient:

$$D(1) = \frac{1}{8}\cdot \sum_{\nu = 0 }^{7} d(\nu)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \frac{1\,{\rm V}}{8}\cdot \left(4 +3\cdot \frac{1 - {\rm j}}{\sqrt{2}}-2\cdot {\rm j}+ \frac{-1 - {\rm j}}{\sqrt{2}}-{\rm j}+ \frac{-1 + {\rm j}}{\sqrt{2}}-{\rm j}+ 2\cdot {\rm j}+3\cdot \frac{1 - {\rm j}}{\sqrt{2}}\right)$$
$$\Rightarrow \; \; D(1) = \frac{2 + \sqrt{2}}{4} \approx 0.854{\rm V}\hspace{0.05cm}.$$

Since  $D(1)$  is purely real,  $D(7) = D(1) \; \underline{= 0.854 \ {\rm V}}$.

This gives for the corresponding values of the continuous spectral function:

$$X(f=-f_{\rm A}) = X(f=+f_{\rm A}) =\frac{D(1)}{f_{\rm A}}= 1.708 \cdot 10^{-3}\,{\rm V/Hz}\hspace{0.05cm}.$$
  • Because of the implicit periodic continuation by the DFT, the value calculated in this way does not exactly match the actual value  $(4 \cdot A \cdot T/\pi^2 = 1.621 · 10^{-3}\text{ V/Hz})$.
  • The relative error is approx.  $5.3\%$.