Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.4Z: On the Hanning Window"

From LNTwww
m (Text replacement - "Category:Exercises for Signal Representation" to "Category:Signal Representation: Exercises")
(No difference)

Revision as of 14:36, 19 May 2021

Characterisation of the Hanning window

In this task, important properties of the frequently used Hanning window are to be derived. The continuous-time representation in the interval from  TP/2  to  +TP/2  is here as follows:

w(t)=cos2(πt/TP)=0.5(1+cos(2πt/TP)).

Outside the symmetric time domain of duration  TP  ist w(t)0.

The upper graph shows the discrete-time representation  w(ν)=w(νTA), where  TA  is smaller than   TP by a factor  N=32 . The definition range of the discrete time variable  ν  extends from  -16  to  +15.

In the lower graph, the Fourier transform  W(f)  of the continuous-time window function  w(t)  is shown logarithmically. The abscissa is normalised to  f_{\rm A} = 1/T_{\rm P} . One can see:

  • The equidistant values  W({\mu} \cdot f_{\rm A})  are zero except for  μ = 0  and  μ = ±1.
  • The main lobe thus extends to the frequency range  |f| ≤ 2 · f_{\rm A}.
  • W(f)  is largest in magnitude outside the main lobe for  f = ±2.5 · f_{\rm A} ..
  • Thus, the minimum distance between the main and side lobes applies here:
A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.





Hints:

  • This task belongs to the chapter  Spectral Analysis.
  • Note that the frequency resolution  f_{\rm A}  is equal to the reciprocal of the adjustable parameter  T_{\rm P} .



Questions

1

Give the discrete-time coefficients  w(ν)  of the Hanning window analytically.
What are the numerical values for  ν = 0ν = 1  and  ν = -\hspace{0.05cm}8?

w(ν = 0) \hspace{0.37cm} = \

w(ν = 1) \hspace{0.37cm} = \

w(ν = -8) \hspace{0.03cm} = \

2

Calculate the spectral function  W(f)  in general. Which of the following statements are correct?

W(f)  yields complex results for special frequency values.
W(f)  is even with respect to  f , i.e.  W(-f) = W(+f).
The spectral value  W(f = 0)  is equal to  0.5/f_{\rm A}  and thus real.

3

What are  W(f = ±f_{\rm A})  and the \text{6 dB}bandwidth normalised to   f_{\rm A} ?

W(±f_{\rm A}) \hspace{0.15cm} = \

\ \cdot \ 1/f_{\rm A}
B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \hspace{0.2cm} = \

4

What is the minimum distance between the main lobe and the side lobe.

A_{\rm H/S} \ = \

\ \rm dB


Solution

(1)  After trigonometric transformation, the result for the continuous-time window function is:

w(t) = {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.
  • After time discretisation with  ν = t/T_{\rm A}  and  T_{\rm P}/T_{\rm A} = N = 32  , one obtains for the discrete-time window:
w(\nu) = w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm} \Rightarrow \hspace{0.3cm}w(\nu = 0) \hspace{0.15 cm}\underline{= 1},
w(\nu = 1) = 0.5+ 0.5\cdot {\rm cos}( \frac{\pi}{16})\hspace{0.15 cm}\underline{ = 0.99},
w(\nu = -8)=0.5+ 0.5\cdot {\rm cos}( \frac{-\pi}{2}) \hspace{0.15 cm}\underline{= 0.5}\hspace{0.05cm}.


(2)  The correct solutions are 2 and 3::

  • The periodic continuation of  w(t)  corresponding to the period  T_{\rm P}  yields a (periodic) signal with a DC and a cosine component.
  • From this follows with   f_{\rm A} = 1/T_{\rm P}:
{\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm cos}(2\pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f \pm f_{\rm A}))\hspace{0.05cm}.
  • The time-limited signal  w(t)  is obtained from  {\rm P}\{w(t)\}  by multiplication with a rectangle of amplitude  1  and duration  T_{\rm P}.
  • Its spectrum  W(f)  is thus obtained from the convolution of the above spectral function with the function  T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A}):
w(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, W(f) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}( \frac{\pi f}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.
  • This spectral function is even and also real for all frequencies  f . The spectral value at frequency  f = 0  gives the window area:
W(f=0) = \frac{0.5}{f_{\rm A}}= \int_{-\infty}^{+\infty}w(t)\hspace{0.05cm}{\rm d}t\hspace{0.05cm}.


(3)  From the result of sub-task  (2)  it also follows:

W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.
  • Due to the monotonic course in the range  |f| < f_{\rm A} , the magnitude function  |W(f)|  has dropped to half of the maximum for the first time exactly at  ± f_{\rm A} .
  • Thus,  B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}.


(4)  The largest spectral amount outside the main lobe occurs at  f = ±2.5 f_{\rm A} . With the result of subtask  (2)  holds:

W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi ) +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )= \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.
  • This gives the minimum distance between the main lobe and the side lobes:
A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{0.5}{0.0121}\hspace{0.15 cm}\underline{\approx 32.3\,\,{\rm dB}}\hspace{0.05cm}.