Difference between revisions of "Aufgaben:Exercise 1.3: Calculating with Complex Numbers"

From LNTwww
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Signaldarstellung/Calculating With Complex Numbers}}
+
{{quiz-Header|Buchseite=Signal_Representation/Calculating_With_Complex_Numbers}}
  
[[File:P_ID800_Sig_A_1_3.png|right|frame|Considered numbers in the complex plane]]
+
[[File:P_ID800_Sig_A_1_3.png|right|frame|Considered numbers <br>in the complex plane]]
 
The diagram to the right shows some points in the complex plane, namely
 
The diagram to the right shows some points in the complex plane, namely
 
   
 
   

Latest revision as of 13:28, 24 May 2021

Considered numbers
in the complex plane

The diagram to the right shows some points in the complex plane, namely

$$z_1 = {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 45^{ \circ}}, $$
$$z_2 = 2 \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}135^{ \circ}},$$
$$z_3 = -{\rm j} .$$

In the course of this task, the following complex quantities will be considered:

$$z_4 = z_2^2 + z_3^2,$$
$$z_5 = 1/z_2,$$
$$z_6 = \sqrt{z_3},$$
$$z_7 = {\rm e}^{\hspace{0.05cm}z_2},$$
$$z_8 = {\rm e}^{\hspace{0.05cm}z_2} + {\rm e}^{\hspace{0.05cm}z_2^{\star}}.$$



Notes:


Questions

1

Which of the following equations are true?

\(2 \cdot z_1 + z_2 =0.\)
\(z_1^{\ast} \cdot z_2 +2=0.\)
\((z_1/z_2) \cdot z_3\) is purely real.

2

What is the value of the complex quantity  \(z_4 = z_2^2 + z_3^2 = x_4 + {\rm j} \cdot y_4\)?

\( x_4 \ =\ \)

\( y_4 \ =\ \)

3

Calculate the complex quantity  \(z_5 = 1/z_2 = x_5 + {\rm j} \cdot y_5\).

\( x_5 \ =\ \)

\( y_5 \ =\ \)

4

\(z_6\)  is the square root of  \(z_3\).  Therefore \(z_6\)  has two solutions with the magnitude  \(|z_6| = 1\).
Give the two possible phase angles of  \(z_6\) .

\( \phi_6 \ ({\rm between\hspace{0.1cm} 0^{\circ} \hspace{0.1cm}and \hspace{0.1cm} +\hspace{-0.15cm}180^{\circ} \hspace{0.1cm}deg}) \hspace{0.2cm} =\ \)

$\ \text{deg}$
\( \phi_6 \ ({\rm between\hspace{0.1cm} - \hspace{-0.15cm}180^{\circ} \hspace{0.1cm}and \hspace{0.1cm} 0^{\circ} \hspace{0.1cm}deg}) \hspace{0.2cm} =\ \)

$\ \text{deg}$

5

Calculate  \(z_7 = {\rm e}^{z_2} = x_7 + {\rm j} \cdot y_7\).

\( x_7 \ =\ \)

\( y_7 \ =\ \)

6

Calculate the complex quantity  \(z_8 = {\rm e}^{z_2} + {\rm e}^{z_2^{\ast}} = x_8 + {\rm j}\cdot y_8\) .

\( x_8 \ =\ \)

\( y_8 \ =\ \)


Solution

(1)  Correct are the solutions 1 and 2:

\[2 \cdot z_1 + z_2 = 2 \cdot \cos(45^{ \circ}) - 2 \cdot {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \sin(45^{ \circ})- 2 \cdot \cos(45^{ \circ}) + 2\cdot {\rm j} \cdot\sin(45^{ \circ}) = 0.\]
  • The second option is also correct, because
\[z_1^{\star} \cdot z_2 = 1 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 45^{ \circ}} \cdot 2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}} = 2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 180^{ \circ}}= -2.\]
  • In contrast, the third option is wrong. The division of  \(z_1\) and \(z_2\)  yields: 
\[\frac{z_1}{z_2} = \frac{{\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 45^{ \circ}}}{2 \cdot{\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}135^{ \circ}}} = 0.5 \cdot{\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 180^{ \circ}}= -0.5.\]
  • The multiplication by  \(z_3 = -{\rm j} \)  leads to the result  ${\rm j}/2$, i.e. to a purely imaginary quantity.


(2)  The square of  \(z_2\)  has the magnitude  \(|z_2|^{2}\)  and the Phase  \(2 \cdot \phi_2\): 

\[z_2^2 = 2^2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 270^{ \circ}}= 4 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 90^{ \circ}}=-4 \cdot {\rm j}.\]
  • Accordingly, the following applies to the square of  \(z_3\):
\[z_3^2 = (-{\rm j})^2 = -1.\]
  • Thus  \(x_4 =\underline{ –1}\)  and  \(y_4 = \underline{–4}.\)


(3)  By applying the division rule one obtains: 

\[z_5 = {1}/{z_2} = \frac{1}{2 \cdot{\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}}}= 0.5 \cdot{\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 135^{ \circ}} = 0.5 \cdot \big[ \cos (- 135^{ \circ}) + {\rm j} \cdot \sin (- 135^{ \circ})\big]\]
\[\Rightarrow \ x_5 = - {\sqrt{2}}/{4}\hspace{0.15cm}\underline{= -0.354},\hspace{0.5cm} y_5 = x_5 \hspace{0.15cm}\underline{= -0.354}.\]


(4)  The given relation for  \(z_6\)  can be transformed as follows:  \(z_6^2 = {z_3} = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 90^{ \circ}}.\)

  • We can see that there are two possibilities for  \(z_6\)  that satisfy this equation:  
\[z_6 \hspace{0.1cm}{\rm (1.\hspace{0.1cm} solution)}\hspace{0.1cm} = \frac{z_2}{2} = 1 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}135^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{= 135^{ \circ}}, \]
\[z_6 \hspace{0.1cm}{\rm (2.\hspace{0.1cm} solution)}\hspace{0.1cm} = {z_1} = 1 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}45^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{=-45^{ \circ}}.\]


(5)  The complex quantity  \(z_2\)  in real part/imaginary part representation is: 

\[z_2 = x_2 + {\rm j} \cdot y_2 = -\sqrt{2} + {\rm j} \cdot\sqrt{2}.\]
  • This results in the following for the complex exponential function:
\[z_7 = {\rm e}^{-\sqrt{2} + {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2}}= {\rm e}^{-\sqrt{2} } \cdot \big[ \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2})\big].\]
  • Thus with  \({\rm e}^{-\sqrt{2} } = 0.243, \hspace{0.4cm} \cos (\sqrt{2}) = 0.156, \hspace{0.4cm} \sin (\sqrt{2}) = 0.988\)  one obtains: 
\[z_7 = 0.243 \cdot \left( 0.156 + {\rm j} \cdot 0.988\right) \hspace{0.15cm}\underline{= 0.038 + {\rm j} \cdot 0.24}.\]


(6)  Starting from the result of subtask  (4)  one obtains for \(z_8\): 

\[z_8 = {\rm e}^{-\sqrt{2} } \cdot \big[ \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2}) + \cos (\sqrt{2}) - {\rm j} \cdot \sin (\sqrt{2})\big] = 2 \cdot {\rm e}^{-\sqrt{2} } \cdot \cos (\sqrt{2}) = 2 \cdot x_7 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_8 \hspace{0.15cm}\underline{= 0.076}, \hspace{0.4cm}y_8\hspace{0.15cm}\underline{ = 0}.\]