Difference between revisions of "Aufgaben:Exercise 1.3Z: Calculating with Complex Numbers II"

From LNTwww
 
(30 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Signaldarstellung/Prinzip der Nachrichtenübertragung}}
+
{{quiz-Header|Buchseite=Signal_Representation/Calculating_With_Complex_Numbers}}
==Z1.3 Nochmals komplexe Zahlen==
 
  
[[File:P_ID802__Sig_Z_1_3.png|right|Zahlen in der komplexen Ebene]]
+
[[File:P_ID802__Sig_Z_1_3.png|right|frame|Considered numbers <br>in the complex plane]]
Ausgegangen wird von drei komplexen Zahlen, die rechts in der komplexen Ebene dargestellt sind:
+
The following three complex quantities are shown in the complex plane to the right:
  
: z1=4+3j,
+
: $$z_1 = 4 + 3\cdot {\rm j},$$
 
: z2=2,
 
: z2=2,
: z3=6j.
+
: $$z_3 = 6\cdot{\rm j} .$$
Im Rahmen dieser Aufgabe sollen berechnet werden:
+
Within the framework of this task, the following quantities are to be calculated:
 
: z4=z1z1,
 
: z4=z1z1,
: $$z_5 = z_1 + 2 \cdot z_2 - \frac{z_3}{2},$$
+
: $$z_5 = z_1 + 2 \cdot z_2 - {z_3}/{2},$$
 
: z6=z1z2,
 
: z6=z1z2,
: $$z_7 = \frac{z_3}{z_1}.$$
+
: $$z_7 = {z_3}/{z_1}.$$
  
''Hinweise:''
 
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen|Zum_Rechnen_mit_komplexen_Zahlen]].
 
*Die Thematik wird auch im Lernvideo [[Rechnen mit komplexen Zahlen ]] behandelt.
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen Zum Rechnen mit komplexen Zahlen] Die Thematik wird auch im folgenden Lernvideo behandelt: Rechnen mit komplexen Zahlen
 
  
Geben Sie Phasenwerte stets im Bereich 180°<ϕ+180° ein.
 
  
  
  
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp;[[Signal_Representation/Calculating_With_Complex_Numbers|Calculating with Complex Numbers]].
 +
*The topic of this task is also covered in the (German language) learning video <br> &nbsp; &nbsp;  &nbsp;[[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]] &nbsp; &rArr; &nbsp; "Arithmetic operations involving complex numbers".
 +
*Enter the phase values in the range of&nbsp; 180<ϕ+180.
 +
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie z1 nach Betrag und Phase an.
+
{Enter the magnitude and phase of&nbsp; z1&nbsp;.
 
|type="{}"}
 
|type="{}"}
|z1| = { 5 3% }
+
$|z_1|\ = \ ${ 5 3% }
ϕ1 = { 36.9 3% } $\text{Grad}$
+
$\phi_1\ = \ { 36.9 3% }\hspace{0.2cm}\text{deg}$
  
  
{Wie lautet z4=z1z1=x4+jy4?
+
{What is&nbsp; z4=z1z1=x4+jy4?
 
|type="{}"}
 
|type="{}"}
x4 = { 25 3% }
+
$x_4\ = \ $ { 25 3% }
y4 = { 0 3% }
+
$y_4\ = \ $ { 0. }
  
  
{Berechnen Sie z5=x5+jy5 entsprechend der Angabenseite.
+
{Calculate&nbsp; $z_5 = z_1 + 2 \cdot z_2 - {z_3}/{2} = x_5 + {\rm j} \cdot y_5$&nbsp;.
 
|type="{}"}
 
|type="{}"}
x5 = { 0 3% }
+
$x_5\ = \ $ { 0. }
y5 = { 0 3% }
+
$y_5\ = \ $ { 0. }
  
  
{Geben Sie z6=z1z2 nach Betrag und Phase (im Bereich $\pm 180°$) an.
+
{Specify the magnitude and phase of&nbsp; z6=z1z2&nbsp; &nbsp; $($range&nbsp; $\pm 180^{\circ})$.
 
|type="{}"}
 
|type="{}"}
|z6| = { 10 3% }
+
$|z_6|\ = \ $ { 10 3% }
$\phi_6$ = { 143.1 3% } $\text{Grad}$
+
$\phi_6\ = \ $ { -145--140 } $\hspace{0.2cm}\text{deg}$
  
  
{Welchen Phasenwert besitzt die rein imaginäre Zahl z3?
+
{What is the phase value of the purely imaginary number&nbsp; z3?
 
|type="{}"}
 
|type="{}"}
ϕ3 = { 90 3% } $\text{Grad}$
+
$\phi_3 \ = \ { 90 3% }\hspace{0.2cm}\text{deg}$
  
  
{Berechnen Sie z7=z3/z1 nach Betrag und Phase (im Bereich $\pm 180°$).
+
{Calculate the magnitude and phase of&nbsp; z7=z3/z1&nbsp; &nbsp; $($range&nbsp; $\pm 180^{\circ})$.
 
|type="{}"}
 
|type="{}"}
|z7| = { 1.2 3% }
+
$|z_7| \ = \ $ { 1.2 3% }
ϕ7 = { 53.1 3% } $\text{Grad}$
+
$\phi_7 \ = \ { 53.1 3% }\hspace{0.2cm}\text{deg}$
 
 
 
 
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Der Betrag kann nach dem Satz von Pythagoras brechnet werden:
+
'''(1)'''&nbsp; The magnitude can be calculated according to the&nbsp; [https://en.wikipedia.org/wiki/Pythagoras Pythagorean ]&nbsp;theorem:
 
:|z1|=x21+y21=42+32=5_.
 
:|z1|=x21+y21=42+32=5_.
Für den Phasenwinkel gilt entsprechend der Seite 3 von [http://en.lntwww.de/Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen Kapitel 1.3] :
+
*For the phase angle, the following applies according to the page&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Magnitude_and_Phase|Representation by Magnitude and Phase]]:
 
:ϕ1=arctany1x1=arctan34=36.9_.
 
:ϕ1=arctany1x1=arctan34=36.9_.
'''2.''' Die Multiplikation von z1 mit deren Konjugiert-Komplexen z1 ergibt die rein reelle Größe z4, wie die beiden nachfolgenden Gleichungen zeigen:
+
 
 +
 
 +
'''(2)'''&nbsp; Multiplying&nbsp; z1&nbsp; by its conjugate complex&nbsp; z1&nbsp; yields the purely real quantity&nbsp; z4, as the following equations show:
 
:$$z_4 = (x_1 + {\rm j} \cdot y_1)(x_1 - {\rm j} \cdot y_1)= {x_1^2 +
 
:$$z_4 = (x_1 + {\rm j} \cdot y_1)(x_1 - {\rm j} \cdot y_1)= {x_1^2 +
 
y_1^2}= |z_1|^2 = 25,$$
 
y_1^2}= |z_1|^2 = 25,$$
:$$z_4 = |z_1| \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi_1} \cdot |z_1| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_1}= |z_1|^2 = 25$$
+
:$$z_4 = |z_1| \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi_1} \cdot |z_1| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_1}= |z_1|^2 = 25\hspace{0.3cm}
:$$\Rightarrow\hspace{0.3cm} x_4 \hspace{0.1cm}\underline{=  25}, \hspace{0.25cm}y_4 \hspace{0.15cm}\underline{=  0}.$$
+
\Rightarrow\hspace{0.3cm} x_4 \hspace{0.1cm}\underline{=  25}, \hspace{0.25cm}y_4 \hspace{0.15cm}\underline{=  0}.$$
'''3.''' Aufgeteilt nach Real- und Imaginärteil kann geschrieben werden:
+
 
:$$x_5 = x_1 + 2 \cdot x_2 - \frac{x_3}{2} = 4 + 2 \cdot(-2) -0 \hspace{0.15cm}\underline{= 0},$$
+
 
:$$y_5 = y_1 + 2 \cdot y_2 - \frac{y_3}{2} = 3 + 2 \cdot 0 - \frac{6}{2} \hspace{0.1cm}\underline{=0}.$$
+
'''(3)'''&nbsp; By dividing into real and imaginary part one can write:
'''4.''' Schreibt man z2 nach Betrag und Phase ($|z_2| = 2, \phi_2 = 180°$), so erhält man für das Produkt:
+
:$$x_5 = x_1 + 2 \cdot x_2 - {x_3}/{2} = 4 + 2 \cdot(-2) -0 \hspace{0.15cm}\underline{= 0},$$
 +
:$$y_5 = y_1 + 2 \cdot y_2 - {y_3}/{2} = 3 + 2 \cdot 0 - \frac{6}{2} \hspace{0.1cm}\underline{=0}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; If one writes&nbsp; z2&nbsp; as magnitude and phase&nbsp; &rArr; &nbsp; $|z_2| = 2, \ \phi_2 = 180^{\circ}$, one obtains for the product:
 
:|z6|=|z1||z2|=52=10_,
 
:|z6|=|z1||z2|=52=10_,
 
:$$\phi_6 = \phi_1 + \phi_2 = 36.9^{\circ} + 180^{\circ} =
 
:$$\phi_6 = \phi_1 + \phi_2 = 36.9^{\circ} + 180^{\circ} =
 
216.9^{\circ}\hspace{0.15cm}\underline{= -143.1^{\circ}}.$$
 
216.9^{\circ}\hspace{0.15cm}\underline{= -143.1^{\circ}}.$$
'''5.''' Die Phase ist 90° (siehe Grafik auf der Angabenseite), wie man formal nachweisen kann:
+
 
:$$\phi_6 = \arctan \left( \frac{6}{0}\right) = \arctan (\infty)
+
 
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{= 90^{
+
'''(5)'''&nbsp; The phase is&nbsp; ϕ3=90&nbsp; (see graph above). This can be formally proven:
 +
:$$\phi_3 = \arctan \left( \frac{6}{0}\right) = \arctan (\infty)
 +
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_3 \hspace{0.15cm}\underline{= 90^{
 
  \circ}}.$$
 
  \circ}}.$$
'''6.''' Zunächst die umständlichere Lösung:
+
 
 +
 
 +
'''(6)'''&nbsp; First, the more inconvenient solution:
 
:$$z_7 = \frac{z_3}{z_1}= \frac{6{\rm j}}{4 + 3{\rm j}} = \frac{6{\rm j}\cdot(4 - 3{\rm j})}{(4 + 3{\rm j})\cdot (4 - 3{\rm j})} =
 
:$$z_7 = \frac{z_3}{z_1}= \frac{6{\rm j}}{4 + 3{\rm j}} = \frac{6{\rm j}\cdot(4 - 3{\rm j})}{(4 + 3{\rm j})\cdot (4 - 3{\rm j})} =
   \frac{18 +24{\rm j}}{25} = 1.2 \cdot{\rm e}^{{\rm j} 53.1^{ \circ}}.$$
+
   \frac{18 +24{\rm j}}{25} = 1.2 \cdot{\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 53.1^{ \circ}}.$$
Ein anderer Lösungsweg lautet:
+
*An easier way of solving the problem is:
 
:$$|z_7| = \frac{|z_3|}{|z_1|} = \frac{6}{5}\hspace{0.15cm}\underline{=1.2}, \hspace{0.3cm}\phi_7 = \phi_3 - \phi_1 = 90^{\circ} - 36.9^{\circ}
 
:$$|z_7| = \frac{|z_3|}{|z_1|} = \frac{6}{5}\hspace{0.15cm}\underline{=1.2}, \hspace{0.3cm}\phi_7 = \phi_3 - \phi_1 = 90^{\circ} - 36.9^{\circ}
 
\hspace{0.15cm}\underline{=53.1^{\circ}}.$$
 
\hspace{0.15cm}\underline{=53.1^{\circ}}.$$
Line 99: Line 107:
  
  
[[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]]
+
[[Category:Signal Representation: Exercises|^1.3 Calculating with Complex Numbers
 +
^]]

Latest revision as of 14:28, 24 May 2021

Considered numbers
in the complex plane

The following three complex quantities are shown in the complex plane to the right:

z1=4+3j,
z2=2,
z3=6j.

Within the framework of this task, the following quantities are to be calculated:

z4=z1z1,
z5=z1+2z2z3/2,
z6=z1z2,
z7=z3/z1.




Hints:

  • This exercise belongs to the chapter Calculating with Complex Numbers.
  • The topic of this task is also covered in the (German language) learning video
         Rechnen mit komplexen Zahlen   ⇒   "Arithmetic operations involving complex numbers".
  • Enter the phase values in the range of  180<ϕ+180.



Questions

1

Enter the magnitude and phase of  z1 .

|z1| = 

ϕ1 = 

deg

2

What is  z4=z1z1=x4+jy4?

x4 = 

y4 = 

3

Calculate  z5=z1+2z2z3/2=x5+jy5 .

x5 = 

y5 = 

4

Specify the magnitude and phase of  z6=z1z2    (range  ±180).

|z6| = 

ϕ6 = 

deg

5

What is the phase value of the purely imaginary number  z3?

ϕ3 = 

deg

6

Calculate the magnitude and phase of  z7=z3/z1    (range  ±180).

|z7| = 

ϕ7 = 

deg


Solution

(1)  The magnitude can be calculated according to the  Pythagorean  theorem:

|z1|=x21+y21=42+32=5_.
ϕ1=arctany1x1=arctan34=36.9_.


(2)  Multiplying  z1  by its conjugate complex  z1  yields the purely real quantity  z4, as the following equations show:

z4=(x1+jy1)(x1jy1)=x21+y21=|z1|2=25,
z4=|z1|ejϕ1|z1|ejϕ1=|z1|2=25x4=25_,y4=0_.


(3)  By dividing into real and imaginary part one can write:

x5=x1+2x2x3/2=4+2(2)0=0_,
y5=y1+2y2y3/2=3+2062=0_.


(4)  If one writes  z2  as magnitude and phase  ⇒   |z2|=2, ϕ2=180, one obtains for the product:

|z6|=|z1||z2|=52=10_,
ϕ6=ϕ1+ϕ2=36.9+180=216.9=143.1_.


(5)  The phase is  ϕ3=90  (see graph above). This can be formally proven:

ϕ3=arctan(60)=arctan()ϕ3=90_.


(6)  First, the more inconvenient solution:

z7=z3z1=6j4+3j=6j(43j)(4+3j)(43j)=18+24j25=1.2ej53.1.
  • An easier way of solving the problem is:
|z7|=|z3||z1|=65=1.2_,ϕ7=ϕ3ϕ1=9036.9=53.1_.