Processing math: 100%

Difference between revisions of "Aufgaben:Exercise 4.6Z: Locality Curve for Phase Modulation"

From LNTwww
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID768__Sig_Z_4_6.png|right|frame|Eine mögliche Ortskurve bei Phasenmodulation]]
+
[[File:P_ID768__Sig_Z_4_6.png|right|frame|A possible locality curve with phase modulation]]
Wir gehen hier von einem Nachrichtensignal  q(t)  aus, das normiert (dimensionslos) betrachtet wird.  
+
We assume a source signal  q(t), which is considered normalised.
*Der Maximalwert dieses Signal ist  qmax=1  und der minimale Signalwert beträgt  qmin=0.5.  
+
*The maximum value of this signal is  qmax=1  and the minimum signal value is  qmin=0.5.  
*Ansonsten ist über  q(t)  nichts bekannt.
+
*Otherwise nothing is known about  q(t).
  
  
Das modulierte Signal lautet bei Phasenmodulation:
+
The modulated signal with phase modulation   ⇒   "transmission signal"  is:
 
:s(t)=s0cos(ωTt+ηq(t)).
 
:s(t)=s0cos(ωTt+ηq(t)).
Hierbei bezeichnet  η  den so genannten Modulationsindex. Auch die konstante Hüllkurve  s0  sei eine dimensionslose Größe, die im Folgenden zu  s0=2  gesetzt wird (siehe Grafik).
+
Here  η  denotes the so-called  "modulation index".  Let the constant envelope  s0  also be a normalise quantity, which is set to  s0=2  in the following (see diagram).
  
Ersetzt man die Cosinusfunktion durch die komplexe Exponentialfunktion, so kommt man zum analytischen Signal
+
If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal
 
:$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(
 
:$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(
 
\omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$
 
\omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$
Daraus kann man das in der Grafik skizzierte äquivalente Tiefpass-Signal wie folgt berechnen:
+
From this, one can calculate the equivalent low-pass signal sketched in the graph as follows:
 
:$$s_{\rm TP}(t) = s_{\rm +}(t)  \cdot {\rm e}^{-{\rm
 
:$$s_{\rm TP}(t) = s_{\rm +}(t)  \cdot {\rm e}^{-{\rm
 
j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm}  t } = s_0\cdot
 
j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm}  t } = s_0\cdot
Line 25: Line 25:
  
  
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 +
 +
*You can check your solution with the interactive applet  [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]    ⇒   "Locality Curve".
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
 
 
*Sie können Ihre Lösung mit dem interaktiven Applet  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]   ⇒   Ortskurve überprüfen.
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Betragsfunktion&nbsp; a(t)=|sTP(t)|? Welcher Wert gilt für&nbsp; t=0?
+
{What is the magnitude function&nbsp; a(t)=|sTP(t)|?&nbsp; Which value is valid for&nbsp; t=0?
 
|type="{}"}
 
|type="{}"}
 
a(t=0) =   { 2 3% }
 
a(t=0) =   { 2 3% }
  
  
{Zwischen welchen Extremwerten&nbsp; ϕmin&nbsp; und&nbsp; ϕmax&nbsp; schwankt die Phase&nbsp; ϕ(t)?
+
{Between which extreme values&nbsp; ϕmin&nbsp; and&nbsp; ϕmax&nbsp; does the phase&nbsp; ϕ(t)?
 
|type="{}"}
 
|type="{}"}
ϕmin =  { -93--87 } &nbsp;$\text{Grad}$
+
ϕmin =  { -93--87 } &nbsp;$\text{deg}$
ϕmin =  { 180 3% } &nbsp;$\text{Grad}$
+
ϕmin =  { 180 3% } &nbsp;$\text{deg}$
  
  
{Bestimmen Sie den Modulationsindex&nbsp; η&nbsp; aus der Phasenfunktion&nbsp; ϕ(t).
+
{Determine the modulation index&nbsp; η&nbsp; from the phase function&nbsp; ϕ(t).
 
|type="{}"}
 
|type="{}"}
 
η =  { 3.1415 3% }
 
η =  { 3.1415 3% }
  
  
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Aus&nbsp; q(t)=0.5=const.&nbsp; folgt&nbsp; s(t)=s0cos(ωTt).
+
- From&nbsp; q(t)=0.5=const.&nbsp; follows&nbsp; s(t)=s0cos(ωTt).
+ Bei einem Rechtecksignal&nbsp; $q(t)&nbsp;(mit nur  zwei möglichen Signalwerten&nbsp;\pm 0.5)$&nbsp; entartet die Ortskurve zu zwei Punkten.
+
+ With a rectangular signal&nbsp; (with only two possible signal values&nbsp; $q(t)=\pm 0.5)$&nbsp; the locality curve degenerates to two points.
+ Mit den Signalwerten&nbsp; ±1&nbsp; (qmin=0.5&nbsp; ist dann nicht mehr gültig) entartet die Ortskurve zu einem Punkt: &nbsp; sTP(t)=s0.  
+
+ With the signal values&nbsp; ±1&nbsp; (qmin=0.5&nbsp; is then no longer valid) the locality curve degenerates to one point: &nbsp; sTP(t)=s0.  
  
  
Line 62: Line 62:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Die Ortskurve ist ein Kreisbogen mit dem Radius&nbsp; 2. Deshalb ist die Betragsfunktion  konstant&nbsp;  a(t)=2_.
+
'''(1)'''&nbsp;  The locality curve is a circular arc with radius&nbsp; 2.&nbsp; Therefore, the magnitude function is constant&nbsp;  a(t)=2_.
  
  
'''(2)'''&nbsp; Aus der Grafik ist zu erkennen, dass folgende Zahlenwerte gelten:  
+
'''(2)'''&nbsp; From the graph it can be seen that the following numerical values apply:
 
*ϕmin=π/290_,
 
*ϕmin=π/290_,
 
*ϕmax=+π+180_.
 
*ϕmax=+π+180_.
Line 73: Line 73:
  
  
'''(3)'''&nbsp; Allgemein gilt hier der Zusammenhang&nbsp; $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
+
'''(3)'''&nbsp; In general, the relation&nbsp; $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
\phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:
+
\phi(t)}$&nbsp; applies here.&nbsp; A comparison with the given function yields:
 
:ϕ(t)=ηq(t).
 
:ϕ(t)=ηq(t).
*Der maximale Phasenwert&nbsp; ϕmax=+π180&nbsp; ergibt sich für die Signalamplitude&nbsp; qmax=1. Daraus folgt direkt&nbsp; ${\eta = \pi} \; \underline{\approx 3.14}$.  
+
*The maximum phase value&nbsp; ϕmax=+π180&nbsp; is obtained for the signal amplitude&nbsp; qmax=1.&nbsp; From this follows directly&nbsp; ${\eta = \pi} \; \underline{\approx 3.1415}$.  
*Dieser Modulationsindex wird durch die Werte&nbsp; ϕmin=π/2&nbsp; und&nbsp; qmin=0.5&nbsp; bestätigt.
+
*This modulation index is confirmed by the values&nbsp; ϕmin=π/2&nbsp; and&nbsp; qmin=0.5&nbsp;.
  
  
[[File:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Ortskurve (Phasendiagramm) beim Rechtecksignal]]
+
[[File:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Locality curve (phase diagram) for a rectangular source signal]]
'''(4)'''&nbsp;  Richtig sind der <u>zweite und der dritte Lösungsvorschlag</u>:
+
'''(4)'''&nbsp;  <u>The second and third proposed solutions</u> are correct:
*Ist&nbsp; q(t)=const.=0.5, so ist die Phasenfunktion ebenfalls konstant:
+
*If&nbsp; q(t)=const.=0.5, the phase function is also constant:
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
*Somit gilt für das tatsächliche, physikalische Signal:
+
*Thus, for the actual physical signal:
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
*Dagegen führt&nbsp; q(t)=+0.5&nbsp; zu &nbsp;ϕ(t)=π/2&nbsp; und zu &nbsp;sTP(t)=2j.  
+
*In contrast,&nbsp; q(t)=+0.5&nbsp; leads to &nbsp;ϕ(t)=π/2&nbsp; and to &nbsp;sTP(t)=2j.  
*Ist&nbsp; q(t)&nbsp; ein Rechtecksignal, das abwechselnd die Werte&nbsp; +0.5&nbsp; und&nbsp; 0.5&nbsp; annimmt, dann besteht die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit&nbsp; +0.5&nbsp; und&nbsp; 0.5 dauern.
+
*If&nbsp; q(t)&nbsp; is a rectangular signal that alternates between&nbsp; +0.5&nbsp; and&nbsp; 0.5&nbsp; , then the locality curve consists of only two points on the imaginary axis, regardless of how long the intervals with &nbsp; +0.5&nbsp; and&nbsp; 0.5&nbsp; last.
*Gilt dagegen&nbsp; q(t)=±1, so ergeben sich rein formal die möglichen Phasenwerte&nbsp; +π&nbsp; und&nbsp; π, die aber identisch sind.  
+
*If, on the other hand,&nbsp; q(t)=±1, then the possible phase values&nbsp; +π&nbsp; and&nbsp; π result purely formally, but they are identical.  
*Die „Ortskurve” besteht dann nur aus einem einzigen Punkt: &nbsp; sTP(t)=s0 &nbsp; <br>&rArr; &nbsp;  das Signal&nbsp; s(t)&nbsp; ist für alle Zeiten&nbsp; t&nbsp;  „minus-cosinusförmig”.
+
*The locality curve then consists of only one point: &nbsp; sTP(t)=s0 &nbsp; &rArr; &nbsp;  the signal&nbsp; s(t)&nbsp; is&nbsp;  "minus-cosine"&nbsp; for all times&nbsp; t.
  
  
Line 98: Line 98:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4.3 Equivalent Low Pass Signal and Its Spectral Function^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 15:02, 24 May 2021

A possible locality curve with phase modulation

We assume a source signal  q(t), which is considered normalised.

  • The maximum value of this signal is  qmax=1  and the minimum signal value is  qmin=0.5.
  • Otherwise nothing is known about  q(t).


The modulated signal with phase modulation   ⇒   "transmission signal"  is:

s(t)=s0cos(ωTt+ηq(t)).

Here  η  denotes the so-called  "modulation index".  Let the constant envelope  s0  also be a normalise quantity, which is set to  s0=2  in the following (see diagram).

If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal

s+(t)=s0ej(ωTt+ηq(t)).

From this, one can calculate the equivalent low-pass signal sketched in the graph as follows:

sTP(t)=s+(t)ejωTt=s0ejηq(t).



Hints:



Questions

1

What is the magnitude function  a(t)=|sTP(t)|?  Which value is valid for  t=0?

a(t=0) = 

2

Between which extreme values  ϕmin  and  ϕmax  does the phase  ϕ(t)?

ϕmin = 

 deg
ϕmin = 

 deg

3

Determine the modulation index  η  from the phase function  ϕ(t).

η = 

4

Which of the following statements are true?

From  q(t)=0.5=const.  follows  s(t)=s0cos(ωTt).
With a rectangular signal  (with only two possible signal values  q(t)=±0.5)  the locality curve degenerates to two points.
With the signal values  ±1  (qmin=0.5  is then no longer valid) the locality curve degenerates to one point:   sTP(t)=s0.


Solution

(1)  The locality curve is a circular arc with radius  2.  Therefore, the magnitude function is constant  a(t)=2_.


(2)  From the graph it can be seen that the following numerical values apply:

  • ϕmin=π/290_,
  • ϕmax=+π+180_.


(3)  In general, the relation  sTP(t)=a(t)ejϕ(t)  applies here.  A comparison with the given function yields:

ϕ(t)=ηq(t).
  • The maximum phase value  ϕmax=+π180  is obtained for the signal amplitude  qmax=1.  From this follows directly  η=π3.1415_.
  • This modulation index is confirmed by the values  ϕmin=π/2  and  qmin=0.5 .


Locality curve (phase diagram) for a rectangular source signal

(4)  The second and third proposed solutions are correct:

  • If  q(t)=const.=0.5, the phase function is also constant:
ϕ(t)=ηq(t)=π/2sTP(t)=js0=2j.
  • Thus, for the actual physical signal:
s(t)=s0cos(ωTtπ/2)=2sin(ωTt).
  • In contrast,  q(t)=+0.5  leads to  ϕ(t)=π/2  and to  sTP(t)=2j.
  • If  q(t)  is a rectangular signal that alternates between  +0.5  and  0.5  , then the locality curve consists of only two points on the imaginary axis, regardless of how long the intervals with   +0.5  and  0.5  last.
  • If, on the other hand,  q(t)=±1, then the possible phase values  +π  and  π result purely formally, but they are identical.
  • The locality curve then consists of only one point:   sTP(t)=s0   ⇒   the signal  s(t)  is  "minus-cosine"  for all times  t.