Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.6Z: Locality Curve for Phase Modulation"

From LNTwww
 
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  

Latest revision as of 15:02, 24 May 2021

A possible locality curve with phase modulation

We assume a source signal  q(t), which is considered normalised.

  • The maximum value of this signal is  qmax=1  and the minimum signal value is  qmin=0.5.
  • Otherwise nothing is known about  q(t).


The modulated signal with phase modulation   ⇒   "transmission signal"  is:

s(t)=s0cos(ωTt+ηq(t)).

Here  η  denotes the so-called  "modulation index".  Let the constant envelope  s0  also be a normalise quantity, which is set to  s0=2  in the following (see diagram).

If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal

s+(t)=s0ej(ωTt+ηq(t)).

From this, one can calculate the equivalent low-pass signal sketched in the graph as follows:

sTP(t)=s+(t)ejωTt=s0ejηq(t).



Hints:



Questions

1

What is the magnitude function  a(t)=|sTP(t)|?  Which value is valid for  t=0?

a(t=0) = 

2

Between which extreme values  ϕmin  and  ϕmax  does the phase  ϕ(t)?

ϕmin = 

 deg
ϕmin = 

 deg

3

Determine the modulation index  η  from the phase function  ϕ(t).

η = 

4

Which of the following statements are true?

From  q(t)=0.5=const.  follows  s(t)=s0cos(ωTt).
With a rectangular signal  (with only two possible signal values  q(t)=±0.5)  the locality curve degenerates to two points.
With the signal values  ±1  (qmin=0.5  is then no longer valid) the locality curve degenerates to one point:   sTP(t)=s0.


Solution

(1)  The locality curve is a circular arc with radius  2.  Therefore, the magnitude function is constant  a(t)=2_.


(2)  From the graph it can be seen that the following numerical values apply:

  • ϕmin=π/290_,
  • ϕmax=+π+180_.


(3)  In general, the relation  sTP(t)=a(t)ejϕ(t)  applies here.  A comparison with the given function yields:

ϕ(t)=ηq(t).
  • The maximum phase value  ϕmax=+π180  is obtained for the signal amplitude  qmax=1.  From this follows directly  η=π3.1415_.
  • This modulation index is confirmed by the values  ϕmin=π/2  and  qmin=0.5 .


Locality curve (phase diagram) for a rectangular source signal

(4)  The second and third proposed solutions are correct:

  • If  q(t)=const.=0.5, the phase function is also constant:
ϕ(t)=ηq(t)=π/2sTP(t)=js0=2j.
  • Thus, for the actual physical signal:
s(t)=s0cos(ωTtπ/2)=2sin(ωTt).
  • In contrast,  q(t)=+0.5  leads to  ϕ(t)=π/2  and to  sTP(t)=2j.
  • If  q(t)  is a rectangular signal that alternates between  +0.5  and  –0.5  , then the locality curve consists of only two points on the imaginary axis, regardless of how long the intervals with   +0.5  and  –0.5  last.
  • If, on the other hand,  q(t) = \pm 1, then the possible phase values  +\pi  and  -\pi result purely formally, but they are identical.
  • The locality curve then consists of only one point:   s_{\rm TP}(t) = - s_0   ⇒   the signal  s(t)  is  "minus-cosine"  for all times  t.