Difference between revisions of "Applets:Bessel functions of the first kind"

From LNTwww
m (Text replacement - "„" to """)
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{LntAppletLink|bessel}}  
+
{{LntAppletLink|besselFuns_en}}  
  
 
==Programmbeschreibung==
 
==Programmbeschreibung==
 
<br>
 
<br>
Dieses Applet ermöglicht die Berechnung und graphische Darstellung der Besselfunktionen erster Art und $n$&ndash;ter Ordnung entsprechend der Reihendarstellung:
+
Dieses Applet ermöglicht die Berechnung und grafische Darstellung der Besselfunktionen erster Art und $n$&ndash;ter Ordnung entsprechend der Reihendarstellung:
  
 
:$${\rm J}_n (x) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (x/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2
 
:$${\rm J}_n (x) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (x/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2
\hspace{0.02cm}\cdot \hspace{0.05cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
+
\hspace{0.05cm}\cdot \hspace{0.03cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
  
*Graphisch dargestellt werden die Funktionen ${\rm J}_n (x)$ für die Ordnung $n=0$ bis $n=9$ in verschiedenen Farben.
+
*Die Funktionen ${\rm J}_n (x)$ können für die Ordnung $n=0$ bis $n=9$ in verschiedenen Farben grafisch dargestellt werden.
*Die Numerikausgabe liefert die Funtionswerte ${\rm J}_0 (x)$ ... ${\rm J}_9 (x)$ für einen per Slider einstellbaren Wert $x$ im Bereich $0 \le x \le 15$ mit Schrittweite $0.5$.
+
*Die linke Ausgabe liefert die Funktionswerte ${\rm J}_0 (x = x_1)$, ... , ${\rm J}_9 (x = x_1)$ für einen per Slider einstellbaren Wert $x_1$ im Bereich $0 \le x_1 \le 15$ mit Schrittweite $0.5$.  
 +
*Die rechte Ausgabe liefert die Funktionswerte ${\rm J}_0 (x = x_2)$, ... , ${\rm J}_9 (x = x_2)$ für einen per Slider einstellbaren Wert $x_2$ (gleicher Wertebereich und Schrittweite wie links).
  
  
 +
[[Applets:Bessel_Functions_of_the_First_Kind_(neues_Applet)|'''Englische Beschreibung''']]
  
 
==Theoretischer Hintergrund==
 
==Theoretischer Hintergrund==
Line 18: Line 20:
 
Besselfunktionen (oder auch Zylinderfunktionen) sind Lösungen der Besselschen Differentialgleichung der Form  
 
Besselfunktionen (oder auch Zylinderfunktionen) sind Lösungen der Besselschen Differentialgleichung der Form  
  
:$$x^2 \cdot \frac{ {\rm d}^2}{{\rm d}x^2}{\rm J}_n (x) \ + \ x \cdot \frac{ {\rm d}}{{\rm d}x}{\rm J}_n (x) \ + \ (x^2 - n^2)  
+
:$$x^2 \cdot \frac{ {\rm d}^2}{{\rm d}x^2}\ {\rm J}_n (x) \ + \ x \cdot \frac{ {\rm d}}{{\rm d}x}\ {\rm J}_n (x) \ + \ (x^2 - n^2)  
 
\cdot {\rm J}_n (x)= 0. $$
 
\cdot {\rm J}_n (x)= 0. $$
  
Hierbei handelt es sich um eine gewöhnliche lineare Differentialgleichung zweiter Ordnung. Der Parameter $n$ ist meistens eine ganze Zahl, so auch in diesem Programm. Diese bereits 1844 von [https://de.wikipedia.org/wiki/Friedrich_Wilhelm_Bessel Friedrich Wilhelm Bessel] eingeführten mathematischen Funktionen können auch in geschlossener Form als Integrale dargestellt werden:
+
Hierbei handelt es sich um eine gewöhnliche lineare Differentialgleichung zweiter Ordnung. Der Parameter $n$ ist meistens ganzzahlig, so auch in diesem Programm. Diese bereits 1844 von [https://de.wikipedia.org/wiki/Friedrich_Wilhelm_Bessel Friedrich Wilhelm Bessel] eingeführten mathematischen Funktionen können auch in geschlossener Form als Integrale dargestellt werden:
  
 
:$${\rm J}_n (x) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}[\hspace{0.05cm}x \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha \hspace{0.05cm}]}}\hspace{0.1cm}{\rm d}\alpha
 
:$${\rm J}_n (x) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}[\hspace{0.05cm}x \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha \hspace{0.05cm}]}}\hspace{0.1cm}{\rm d}\alpha
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die mit ${\rm J}_n (x)$ bezeichneten Besselfunktionen gehören zur ersten Art. Es gibt aber auch die mit ${\rm Y}_n (x)$ benannten Besselfunktionen zweiter Art, die sich für ganzzahliges $n$ durch ${\rm J}_n (x)$&ndash;Funktionen ausdrücken lassen. Diese werden in diesem Applet jedoch nicht betrachtet.
+
Die Funktionen  ${\rm J}_n (x)$ gehören zur Klasse der Besselfunktionen erster Art (englisch: &nbsp; ''Bessel Functions of the First Kind''&nbsp;). Den Parameter $n$ nennt man die ''Ordnung''.  
  
Die Anwendungen der Besselfunktionen in den Natur&ndash; und Ingenieurswissenschaften sind vielfältig. Wir beschränken uns hier auf einige Gebiete, die in unserem Lerntutorial $\rm LNTwww$ angesprochen werden.
+
''Anmerkung:'' &nbsp; Es gibt eine Vielzahl von Abwandlungen der Besselfunktionen, unter anderem die mit ${\rm Y}_n (x)$ benannten Besselfunktionen zweiter Art. Für ganzzahliges $n$ lässt sich ${\rm Y}_n (x)$ durch ${\rm J}_n (x)$&ndash;Funktionen ausdrücken. In diesem Applet werden jedoch nur die Besselfunktionen erster Art &nbsp; &rArr; &nbsp; ${\rm J}_n (x)$ betrachtet.
 +
<br><br>
 +
===Eigenschaften der Besselfunktionen===
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Eigenschaft (A):}$&nbsp; &nbsp;Sind die Funktionswerte für $n = 0$ und $n = 1$ bekannt, so können daraus die Besselfunktionen für $n ≥ 2$ iterativ ermittelt werden:
 +
:$${\rm J}_n (x) ={2 \cdot (n-1)}/{x} \cdot {\rm J}_{n-1} (x) - {\rm J}_{n-2} (x) \hspace{0.05cm}.$$
 +
}}
  
  
===Anwendungen der Besselfunktionen===  
+
{{GraueBox|TEXT=
 +
$\text{Beispiel (A):}$&nbsp; &nbsp;Es gelte ${\rm J}_0 (x = 2) = 0.22389$ und ${\rm J}_1 (x= 2) = 0.57672$. Daraus können iterativ berechnet werden:
 +
:$${\rm J}_2 (x= 2) ={2 \cdot 1}/{2} \cdot {\rm J}_{1} (x= 2) - {\rm J}_{0} (x= 2) = 0.57672 - 0.22389 = \hspace{0.15cm}\underline{0.35283}\hspace{0.05cm},$$
 +
:$${\rm J}_3 (x= 2) ={2 \cdot 2}/{2} \cdot {\rm J}_{2} (x= 2) - {\rm J}_{1} (x= 2) = 2 \cdot 0.35283 - 0.57672  = \hspace{0.15cm}\underline{0.12894}\hspace{0.05cm},$$
 +
:$${\rm J}_4 (x= 2) ={2 \cdot 3}/{2} \cdot {\rm J}_{3} (x= 2) - {\rm J}_{2} (x= 2) = 3 \cdot 0.12894 - 0.35283  = \hspace{0.15cm}\underline{0.03400}\hspace{0.05cm}.$$
 +
}}
  
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Eigenschaft (B):}$&nbsp; &nbsp;Es gilt die Symmetriebeziehung ${\rm J}_{–n}(x) = (–1)^n · {\rm J}_n(x)$:
 +
:$${\rm J}_{-1}(x) = - {\rm J}_{1}(x), \hspace{0.3cm}{\rm J}_{-2}(x) =  {\rm J}_{2}(x), \hspace{0.3cm}{\rm J}_{-3}(x) = - {\rm J}_{3}(x).$$
 +
}}
  
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel (B):}$&nbsp; &nbsp;Für das Spektrum des analytischen Signals gilt bei [[Modulation_Methods/Phasenmodulation_(PM)#Spektralfunktion_eines_phasenmodulierten_Sinussignals|Phasenmodulation eines Sinussignals]]:
 +
[[File:Mod_T_3_1_S4_version2.png|right|frame|Spektrum des analytischen Signals bei Phasenmodulation]]
 +
:$$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$
 +
Hierbei bezeichnen
 +
*$f_{\rm T}$ die Trägerfrequenz,
 +
*$f_{\rm N}$ die Nachrichtenfrequenz,
 +
* $A_{\rm T}$ die Trägeramplitude.
  
  
 +
Der Parameter der Besselfunktionen ist bei dieser Anwendung der Modulationsindex $\eta$.
  
 +
Anhand der Grafik sind folgende Aussagen möglich:
 +
*$S_+(f)$ besteht hier aus unendlich vielen diskreten Linien im Abstand von $f_{\rm N}$.
 +
*Es ist somit prinzipiell unendlich weit ausgedehnt.
 +
*Die Gewichte der Spektrallinien bei $f_{\rm T} + n · f_{\rm N}$ ($n$ ganzzahlig) sind durch den Modulationsindex $η$ über die Besselfunktionen ${\rm J}_n(η)$ festgelegt.
 +
*Die Spektrallinien sind bei sinusförmigem Quellensignal und cosinusförmigem Träger reell und für gerades $n$ symmetrisch um $f_{\rm T}$.
 +
*Bei ungeradem $n$ ist ein Vorzeichenwechsel entsprechend der $\text{Eigenschaft (B)}$ zu berücksichtigen.
 +
*Die Phasenmodulation einer Schwingung mit anderer Phase von Quellen– und/oder Trägersignal liefert das gleiche Betragsspektrum.}}
 +
<br><br>
 +
===Anwendungen der Besselfunktionen===
  
 +
Die Anwendungen der Besselfunktionen in den Natur&ndash; und Ingenieurswissenschaften sind vielfältig und spielen eine wichtige Rolle in der Physik, zum Beispiel:
 +
*Untersuchung von Eigenschwingungen von zylindrischen Resonatoren,
 +
*Lösung der radialen Schrödinger&ndash;Gleichung,
 +
*Schalldruckamplituden von dünnflüssgigen Rotationsströmen,
 +
*Wärmeleitung in zylindrischen Körpern,
 +
*Streuungsproblem eines Gitters,
 +
*Dynamik von Schwingkörpern,
 +
*Winkelauflösung.
  
  
 +
Man zählt die Besselfunktionen wegen ihrer vielfältigen Anwendungen in der mathematischen Physik zu den speziellen Funktionen.
  
 +
Wir beschränken uns im Folgenden auf einige Gebiete, die in unserem Lerntutorial $\rm LNTwww$ angesprochen werden. 
  
Sie spielen eine wichtige Rolle in der Physik. Man trifft u.a. bei der Untersuchung von Eigenschwingungen von zylindrischen Resonatoren, der Analyse des Frequenzspektrums von frequenzmodulierten Signalen und dem Sättigungsverhalten von Klystrons auf die Besselfunktionen. Man zählt die Besselfunktionen wegen ihrer vielfältigen Anwendungen in der mathematischen Physik zu den speziellen Funktionen. Die Funktionswerte entnimmt man in der Praxis aus Bessel-Funktionstabellen.
+
{{GraueBox|TEXT= 
${\rm Q}(x)$ und $1/2\cdot {\rm erfc}(x)$, die für die Fehlerwahrscheinlichkeitsberechnung von großer Bedeutung sind.
+
$\text{Beispiel (C):} \hspace{0.5cm} \text{Einsatz in der Spektralanalyse} \ \Rightarrow \ \text{Kaiser-Bessel-Filter}$
*Sowohl die Abszisse als auch der Funktionswert kann entweder linear oder logarithmisch dargestellt werden.
 
*Für beide Funktionen wird jeweils eine obere Schranke (englisch: ''Upper Bound '') und eine untere Schranke (englisch: ''Lower Bound'') angegeben.
 
  
Diese bereits 1844 von [https://de.wikipedia.org/wiki/Friedrich_Wilhelm_Bessel Friedrich Wilhelm Bessel] eingeführten mathematischen Funktionen sind wie folgt definiert (erste Gleichung) und können gemäß der zweiten Gleichung durch eine Reihe angenähert werden:
+
Als '''spektralen Leckeffekt'''  bezeichnet man die Verfälschung des Spektrums eines periodischen und damit zeitlich unbegrenzten Signals aufgrund der impliziten Zeitbegrenzung der Diskreten Fouriertransformation (DFT). Dadurch werden zum Beispiel von einem Spektrumanalyzer
[[File: P_ID2329__Mod_T_3_1_A1_70neu.png|right|frame|Zur Berechnung der Besselfunktionen]]
+
*im Zeitsignal nicht vorhandene Frequenzanteile vorgetäuscht, und/oder
 +
*tatsächlich vorhandene Spektralkomponenten durch Seitenkeulen verdeckt.
  
  
Die nebenstehende Grafik zeigt die jeweils ersten drei Summanden $(k = 0, 1, 2)$ der Reihen ${\rm J}_0(η)$, ... , ${\rm J}_3(η).$ Der rot umrandete Term – gültig für $n = 3$ und $k = 2$ – lautet beispielsweise in ausgeschriebener Form:
+
Aufgabe der [[Signal_Representation/Spectrum_Analysis|Spektralanalyse]] ist es, durch die Bereitstellung geeigneter Fensterfunktionen den Einfluss des ''spektralen Leckeffektes'' zu begrenzen.
:$$\frac{(-1)^2 \cdot (\eta/2)^{3 \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.02cm}\cdot \hspace{0.05cm}2}}{2\hspace{0.05cm}! \cdot (3+2)\hspace{0.05cm}!} = \frac{1}{240}\cdot (\frac{\eta}{2})^7 \hspace{0.05cm}.$$
 
*Die Besselfunktionen $J_n(η)$ findet man aber auch in Formelsammlungen oder mit Hilfe des von uns bereitgestellten Berechnungsmodul [[Applets:Besselfunktion|Besselfunktion erster Art und $n$–ter Ordnung]]
 
*Sind die Funktionswerte für $n = 0$ und $n = 1$ bekannt, so können daraus die Besselfunktionen für $n ≥ 2$ iterativ ermittelt werden:
 
:$${\rm J}_n (\eta) ={2 \cdot (n-1)}/{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.05cm}.$$
 
  
Bei der Untersuchung digitaler Übertragungssysteme muss oft die Wahrscheinlichkeit bestimmt werden, dass eine (mittelwertfreie) gaußverteilte Zufallsgröße $x$ mit der Varianz $σ^2$ einen vorgegebenen Wert $x_0$ überschreitet. Für diese Wahrscheinlichkeit gilt:
+
Eine solche Fensterfunktion liefert zum Beispiel das Kaiser&ndash;Bessel&ndash;Fenster &nbsp; &rArr; &nbsp; siehe Abschnitt [[Signal_Representation/Spectrum_Analysis#Spezielle_Fensterfunktionen|Spezielle Fensterfunktionen]]. Dessen zeitdiskrete Fensterfunktion lautet mit der Besselfunktion nullter Ordnung &nbsp; &rArr; &nbsp; ${\rm J}_0(x)$, dem Parameter $\alpha=3.5$ und der Fensterlänge $N$:
:$${\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).$$
+
:$$w_\nu = \frac{ {\rm J}_0\big(\pi \cdot \alpha \cdot \sqrt{1 - (2\nu/N)^2}\big)}{ {\rm J}_0\big(\pi \cdot \alpha \big)}.$$
<br>
+
Auf der Seite [[Signal_Representation/Spectrum_Analysis#G.C3.BCtekriterien_von_Fensterfunktionen|Gütekriterien von Fensterfunktionen]] sind unter anderem die Kenngrößen des Kaiser&ndash;Bessel&ndash;Fensters angegeben:
===Die Funktion ${\rm Q}(x )$===
+
*Günstig sind der große "Minimale Abstand zwischen Hauptkeule und Seitenkeulen" und der gewünschte kleine "Maximale Skalierungsfehler".
<br>
+
*Aufgrund der sehr großen "Äquivalenten Rauschbreite" schneidet das Kaiser&ndash;Bessel&ndash;Fenster im wichtigsten Vergleichskriterium "Maximaler Prozessverlust" allerdings schlechter ab als die etablierten Hamming&ndash; und Hanning&ndash;Fenster.}}
Die Funktion ${\rm Q}(x)$ bezeichnet man als das ''Komplementäre Gaußsche Fehlerintegral''. Es gilt folgende Berechnungsvorschrift:
 
:$${\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .$$
 
*Dieses Integral ist nicht analytisch lösbar und muss &ndash; wenn man dieses Applet nicht zur Verfügung hat &ndash; aus Tabellen entnommen werden.
 
*Speziell für größere $x$–Werte von (also für kleine Fehlerwahrscheinlichkeiten) liefern die nachfolgend angegebenen Schranken eine brauchbare Abschätzung für das Komplementäre Gaußsche Fehlerintegral, die auch ohne Tabellen berechnet werden können.
 
*Eine obere Schranke (englisch: ''Upper Bound '') des Komplementären Gaußschen Fehlerintegrals lautet:  
 
:$${\rm Q}_{\rm UB}(x  )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).$$
 
*Entsprechend gilt für die untere Schranke (englisch: ''Lower Bound ''):
 
:$${\rm Q}_{\rm LB}(x  )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2}  ={\rm Q}_{\rm UB}(x  ) \cdot (1-1/x^2)< {\rm Q}(x).$$
 
  
In vielen Programmbibliotheken findet man allerdings  die Funktion ${\rm Q}(x )$ nicht.
 
<br>
 
===Die Funktion $1/2 \cdot {\rm erfc}(x )$===
 
<br>
 
In fast allen Programmbibliotheken findet man dagegen die ''Komplementäre Gaußsche Fehlerintegral'' (englisch: ''Complementary Gaussian Error Function'')
 
:$${\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$
 
die mit ${\rm Q}(x)$ wie folgt zusammenhängt: &nbsp; ${\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).$ Da bei fast allen Anwendungen diese Funktion mit dem Faktor $1/2$ verwendet wird, wurde in diesem Applet genau diese Funktion realisiert:
 
:$$1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .$$
 
  
*Auch für diese Funktion kann wieder eine obere und eine untere Schranke angegeben werden:
 
:$$\text{Upper Bound }\big [1/2 \cdot{\rm erfc}(x)  \big ] = \frac{ 1}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} ,$$
 
:$$\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x)  \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .$$
 
<br>
 
===Wann bietet welche Funktion Vorteile?===
 
<br>
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Wir betrachten die binäre Basisbandübertragung. Hier lautet die Bitfehlerwahrscheinlichkeit $p_{\rm B} = {\rm Q}({s_0}/{\sigma_d})$, wobei das Nutzsignal die Werte $\pm s_0$ annehmen kann und der Rauscheffektivwert $\sigma_d$ ist.
+
$\text{Beispiel (D):} \hspace{0.5cm} \text{Rice-Fading-Kanalmodell}$
 +
 
 +
Die [[Mobile_Communications/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Allgemeine_Beschreibung_des_Mobilfunkkanals| Rayleigh&ndash;Verteilung]] beschreibt den Mobilfunkkanal unter der Annahme, dass kein direkter Pfad vorhanden ist und sich somit der multiplikative Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ allein aus diffus gestreuten Komponenten zusammensetzt.
 +
 
 +
Bei Vorhandensein einer Direktkomponente (englisch: <i>Line of Sight</i>, LoS) muss man im Modell zu den mittelwertfreien Gaußprozessen $x(t)$ und $y(t)$ noch Gleichkomponenten $x_0$ und/oder $y_0$ hinzufügen:
 +
 
 +
[[File:P ID2126 Mob T 1 4 S1 v3.png|right|frame|Rice-Fading-Kanalmodell|class=fit]]
 +
$$\hspace{0.2cm}x(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} x(t) +x_0 \hspace{0.05cm}, \hspace{0.2cm} y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} y(t) +y_0\hspace{0.05cm},$$
 +
 
 +
$$\hspace{0.2cm}z(t) = x(t) + {\rm j} \cdot y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} z(t) +z_0 \hspace{0.05cm},\hspace{0.2cm}
 +
z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.$$
 +
 
 +
Die Grafik zeigt dieses [[Mobile_Communications/Nichtfrequenzselektives_Fading_mit_Direktkomponente|Rice&ndash;Fading&ndash;Kanalmodell]]. Es lässt sich wie folgt zusammenfassen:
 +
*Der Realteil $x(t)$ ist gaußverteilt mit Mittelwert $x_0$ und Varianz $\sigma ^2$.
 +
*Der Imaginärteil $y(t)$ ist ebenfalls gaußverteilt  (Mittelwert $y_0$, gleiche Varianz $\sigma ^2$)  sowie unabhängig von $x(t)$.<br>
 +
 
 +
*Für $z_0 \ne 0$ ist der Betrag $\vert z(t)\vert$ riceverteilt, woraus die Bezeichnung "<i>Rice&ndash;Fading</i>" herrührt.  
  
Es wird vorausgesetzt, dass Tabellen zur Verfügung stehen, in denen das Argument der Gaußschen Fehlerfunktionen im Abstand $0.1$ aufgelistet sind. Mit $s_0/\sigma_d = 4$ erhält man für die Bitfehlerwahrscheinlichkeit gemäß der Q&ndash;Funktion:
+
*Zur Vereinfachung der Schreibweise setzen wir  $\vert z(t)\vert = a(t)$. Für $a < 0$ ist die Betrags&ndash;WDF $f_a(a) \equiv 0$.
:$$p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$
+
*Für $a \ge  0$ gilt folgende Gleichung, wobei  ${\rm I_0}(x)$ die <i>modifizierte Besselfunktion</i> nullter Ordnung bezeichnet:
Nach der zweiten Gleichung ergibt sich:
+
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm e}^{ - (a^2 + \vert z_0 \vert ^2)/(2\sigma^2)} \cdot {\rm I}_0 \left [ \frac{a \cdot \vert z_0 \vert}{\sigma^2} \right ] \hspace{0.5cm}\text{mit}\hspace{0.5cm}{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) =
:$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$
+
\sum_{k = 0}^{\infty} \frac{ (u/2)^{2k} }{k! \cdot \Gamma (k+1)}
*Richtiger ist der erste Wert. Bei der zweiten Berechnungsart muss man runden oder &ndash; noch besser &ndash; interpolieren, was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.<br>
+
\hspace{0.05cm}.$$
*Bei den gegebenen Zahlenwerten ist demnach  Q&ndash;Funktion besser geeignet. Außerhalb von Übungsbeispielen wird $s_0/\sigma_d$ in der Regel einen &bdquo;krummen&rdquo; Wert besitzen. In diesem Fall bietet ${\rm Q}(x)$  natürlich keinen Vorteil gegenüber $1/2 \cdot{\rm erfc}(x)$. }}
+
*Zwischen der modifizierten Besselfunktion und der herkömmlichen Besselfunktion ${\rm I_0}(x)$ &ndash; jeweils erster Art &ndash; besteht also der Zusammenhang ${\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u)$.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;
+
$\text{Beispiel (E):} \hspace{0.5cm} \text{Analyse des Frequenzspektrums von frequenzmodulierten Signalen}$
Mit der Energie pro Bit  $(E_{\rm B})$ und der Rauschleistungsdichte $(N_0)$ gilt für die Bitfehlerwahrscheinlichkeit von ''Binary Phase Shift Keying'' (BPSK):
+
 
:$$p_{\rm B} =  {\rm Q} \left ( \sqrt{ {2  E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot {\rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.$$
+
Im $\text{Beispiel (B)}$ wurde bereits gezeigt, dass die Winkelmodulation einer harmonischen Schwingung der Frequenz $f_{\rm N}$ zu einem Linienspektrum führt. Die Spektrallinien liegen um die Trägerfrequenz $f_{\rm T}$ bei $f_{\rm T} + n \cdot f_{\rm N}$ mit $n \in \{ \ \text{...}, -2, -1, \ 0, +1, +2, \text{...} \ \}$. Die Gewichte der Diraclinien sind ${\rm J }_n(\eta)$, abhängig vom Modulationsindex $\eta$.
Für die Zahlenwerte $E_{\rm B} = 16 \ \rm mWs$ und $N_0 = 16 \ \rm mW/Hz$ erhält man:
+
 
:$$p_{\rm B} =  {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right )  \hspace{0.05cm}.$$
+
[[File:P_ID1095__Mod_T_3_2_S4_neu.png|center|frame|Diskrete Spektren bei Phasenmodulation (links) und Frequenzmodulation (rechts)]] 
*Der erste Weg führt zum Ergebnis $p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.05cm}$, während $1/2 \cdot{\rm erfc}(x)$ hier den richtigeren Wert $p_{\rm B} \approx 0.771 \cdot 10^{-8}$ liefert.  
+
 
*Wie im ersten Beispiel erkennt man aber auch hier: Die Funktionen ${\rm Q}(x)$ und $1/2 \cdot{\rm erfc}(x)$ sind grundsätzlich gleich gut geeignet. Vor&ndash; oder Nachteile der einen oder anderen Funktion ergeben sich nur bei konkreten Zahlenwerten.}}
+
Die Grafik zeigt das Betragsspektrum $\vert S_{\rm +}(f) \vert$ des analytischen Signals bei Phasenmodulation (PM) und Frequenzmodulation (FM). Darunter versteht man zwei unterschiedliche Formen der Winkelmodulation (WM).  
<br>
+
&nbsp; &nbsp; &nbsp; ''Hinweis:'' &nbsp; Alle Bessellinien mit Beträgen kleiner als $0.03$ sind in der Grafik vernachlässigt.  
  
 +
Für die obere Bildhälfte sind die Modulatorparameter so gewählt, dass sich für $f_{\rm N} = 5  \ \rm kHz$ jeweils ein Besselspektrum mit dem Modulationsindex $η = 1.5$ ergibt. Lässt man die Phasenbeziehungen außer Acht, so ergeben sich für beide Systeme gleiche Spektren und damit auch gleiche Signale.
  
==Zur Handhabung des Applets==
+
Die unteren Grafiken gelten bei sonst gleichen Einstellungen für die Nachrichtenfrequenz $f_{\rm N} = 3 \ \rm kHz$. Man erkennt:
[[File:Handhabung_binomial.png|left|600px]]
+
*Bei der Phasenmodulation ergibt sich gegenüber $f_{\rm N} = 5 \ \rm kHz$ eine schmalere Spektralfunktion, da nun der Abstand der Bessellinien nur mehr $3 \ \rm kHz$ beträgt. Da bei PM der Modulationsindex unabhängig von $f_{\rm N}$ ist, ergeben sich die gleichen Besselgewichte wie bei $f_{\rm N} = 5 \ \rm kHz$.
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Vorauswahl für blauen Parametersatz
+
*Auch bei der Frequenzmodulation treten nun die Bessellinien im Abstand von $3 \ \rm kHz$ auf. Da aber bei FM der Modulationsindex umgekehrt proportional zu $f_{\rm N}$  ist, gibt es nun unten aufgrund des größeren Modulationsindex $η = 2.5$  deutlich mehr Bessellinien als im rechten oberen (für $η = 1.5$ gültigen) Diagramm. }}
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parametereingabe $I$ und $p$ per Slider
 
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Vorauswahl für roten Parametersatz
+
==Zur Handhabung des Applets==
 +
[[File:Bessel_abzug3.png|left|600px]]
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Summenformel der Besselfunktionen ${\rm J}_n(x)$
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parametereingabe $\lambda$ per Slider
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Auswahl der Ordnung $n$ für die grafische Darstellung
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Graphische Darstellung der Verteilungen
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Grafische Darstellung der Besselfunktionen
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Momentenausgabe für blauen Parametersatz
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Variation der grafischen Darstellung
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Momentenausgabe für roten Parametersatz
+
$\hspace{1.5cm}$"$+$" (Vergrößern),
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Variation der grafischen Darstellung
+
$\hspace{1.5cm}$ "$-$" (Verkleinern)
  
$\hspace{1.5cm}$&bdquo;$+$&rdquo; (Vergrößern),
+
$\hspace{1.5cm}$ "$\rm o$" (Zurücksetzen)
  
$\hspace{1.5cm}$ &bdquo;$-$&rdquo; (Verkleinern)
+
$\hspace{1.5cm}$ "$\leftarrow$" (Verschieben nach links),  usw.
  
$\hspace{1.5cm}$ &bdquo;$\rm o$&rdquo; (Zurücksetzen)
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Auswahl des Abszissenwertes $x_1$ für die linke Numerikausgabe
  
$\hspace{1.5cm}$ &bdquo;$\leftarrow$&rdquo; (Verschieben nach links),  usw.
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Numerikausgabe der Besselfunktionswerte ${\rm J}_n(x_1)$
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Ausgabe von ${\rm Pr} (z = \mu)$ und ${\rm Pr} (z  \le \mu)$  
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Auswahl des Abszissenwertes $x_2$ für die rechte Numerikausgabe
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Numerikausgabe der Besselfunktionswerte ${\rm J}_n(x_2)$
 
<br clear=all>
 
<br clear=all>
<br>'''Andere Möglichkeiten zur Variation der grafischen Darstellung''':
 
*Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
 
*Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
 
 
  
  
 
==Über die Autoren==
 
==Über die Autoren==
 
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
 
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
*Die erste Version wurde 2007 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*Die erste Version wurde 2006 von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Markus_Elsberger_.28Diplomarbeit_LB_2006.29|Markus Elsberger]] und [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Slim_Lamine_.28Studienarbeit_EI_2006.29|Slim Lamine]] im Rahmen von Abschlussarbeiten mit "FlashMX&ndash;Actionscript" erstellt (Betreuer: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
*2018 wurde das Programm  von [[Marwen ???]]  (Bachelorarbeit, Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] )  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
+
*2018 wurde das Programm  von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]]  (Bachelorarbeit, Betreuer: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] )  auf  "HTML5" umgesetzt.
  
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
  
{{LntAppletLink|bessel}}
+
{{LntAppletLink|besselFuns_en}}

Latest revision as of 15:49, 28 May 2021

Open Applet in a new tab

Programmbeschreibung


Dieses Applet ermöglicht die Berechnung und grafische Darstellung der Besselfunktionen erster Art und $n$–ter Ordnung entsprechend der Reihendarstellung:

$${\rm J}_n (x) = \sum\limits_{k=0}^{\infty}\frac{(-1)^k \cdot (x/2)^{n \hspace{0.05cm} + \hspace{0.05cm} 2 \hspace{0.05cm}\cdot \hspace{0.03cm}k}}{k! \cdot (n+k)!} \hspace{0.05cm}.$$
  • Die Funktionen ${\rm J}_n (x)$ können für die Ordnung $n=0$ bis $n=9$ in verschiedenen Farben grafisch dargestellt werden.
  • Die linke Ausgabe liefert die Funktionswerte ${\rm J}_0 (x = x_1)$, ... , ${\rm J}_9 (x = x_1)$ für einen per Slider einstellbaren Wert $x_1$ im Bereich $0 \le x_1 \le 15$ mit Schrittweite $0.5$.
  • Die rechte Ausgabe liefert die Funktionswerte ${\rm J}_0 (x = x_2)$, ... , ${\rm J}_9 (x = x_2)$ für einen per Slider einstellbaren Wert $x_2$ (gleicher Wertebereich und Schrittweite wie links).


Englische Beschreibung

Theoretischer Hintergrund


Allgemeines zu den Besselfunktionen

Besselfunktionen (oder auch Zylinderfunktionen) sind Lösungen der Besselschen Differentialgleichung der Form

$$x^2 \cdot \frac{ {\rm d}^2}{{\rm d}x^2}\ {\rm J}_n (x) \ + \ x \cdot \frac{ {\rm d}}{{\rm d}x}\ {\rm J}_n (x) \ + \ (x^2 - n^2) \cdot {\rm J}_n (x)= 0. $$

Hierbei handelt es sich um eine gewöhnliche lineare Differentialgleichung zweiter Ordnung. Der Parameter $n$ ist meistens ganzzahlig, so auch in diesem Programm. Diese bereits 1844 von Friedrich Wilhelm Bessel eingeführten mathematischen Funktionen können auch in geschlossener Form als Integrale dargestellt werden:

$${\rm J}_n (x) = \frac{1}{2\pi}\cdot \int_{-\pi}^{+\pi} {{\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}[\hspace{0.05cm}x \hspace{0.05cm}\cdot \hspace{0.05cm}\sin(\alpha) -\hspace{0.05cm} n \hspace{0.05cm}\cdot \hspace{0.05cm}\alpha \hspace{0.05cm}]}}\hspace{0.1cm}{\rm d}\alpha \hspace{0.05cm}.$$

Die Funktionen ${\rm J}_n (x)$ gehören zur Klasse der Besselfunktionen erster Art (englisch:   Bessel Functions of the First Kind ). Den Parameter $n$ nennt man die Ordnung.

Anmerkung:   Es gibt eine Vielzahl von Abwandlungen der Besselfunktionen, unter anderem die mit ${\rm Y}_n (x)$ benannten Besselfunktionen zweiter Art. Für ganzzahliges $n$ lässt sich ${\rm Y}_n (x)$ durch ${\rm J}_n (x)$–Funktionen ausdrücken. In diesem Applet werden jedoch nur die Besselfunktionen erster Art   ⇒   ${\rm J}_n (x)$ betrachtet.

Eigenschaften der Besselfunktionen

$\text{Eigenschaft (A):}$   Sind die Funktionswerte für $n = 0$ und $n = 1$ bekannt, so können daraus die Besselfunktionen für $n ≥ 2$ iterativ ermittelt werden:

$${\rm J}_n (x) ={2 \cdot (n-1)}/{x} \cdot {\rm J}_{n-1} (x) - {\rm J}_{n-2} (x) \hspace{0.05cm}.$$


$\text{Beispiel (A):}$   Es gelte ${\rm J}_0 (x = 2) = 0.22389$ und ${\rm J}_1 (x= 2) = 0.57672$. Daraus können iterativ berechnet werden:

$${\rm J}_2 (x= 2) ={2 \cdot 1}/{2} \cdot {\rm J}_{1} (x= 2) - {\rm J}_{0} (x= 2) = 0.57672 - 0.22389 = \hspace{0.15cm}\underline{0.35283}\hspace{0.05cm},$$
$${\rm J}_3 (x= 2) ={2 \cdot 2}/{2} \cdot {\rm J}_{2} (x= 2) - {\rm J}_{1} (x= 2) = 2 \cdot 0.35283 - 0.57672 = \hspace{0.15cm}\underline{0.12894}\hspace{0.05cm},$$
$${\rm J}_4 (x= 2) ={2 \cdot 3}/{2} \cdot {\rm J}_{3} (x= 2) - {\rm J}_{2} (x= 2) = 3 \cdot 0.12894 - 0.35283 = \hspace{0.15cm}\underline{0.03400}\hspace{0.05cm}.$$


$\text{Eigenschaft (B):}$   Es gilt die Symmetriebeziehung ${\rm J}_{–n}(x) = (–1)^n · {\rm J}_n(x)$:

$${\rm J}_{-1}(x) = - {\rm J}_{1}(x), \hspace{0.3cm}{\rm J}_{-2}(x) = {\rm J}_{2}(x), \hspace{0.3cm}{\rm J}_{-3}(x) = - {\rm J}_{3}(x).$$


$\text{Beispiel (B):}$   Für das Spektrum des analytischen Signals gilt bei Phasenmodulation eines Sinussignals:

Spektrum des analytischen Signals bei Phasenmodulation
$$S_{\rm +}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta \big[f - (f_{\rm T}+ n \cdot f_{\rm N})\big]\hspace{0.05cm}.$$

Hierbei bezeichnen

  • $f_{\rm T}$ die Trägerfrequenz,
  • $f_{\rm N}$ die Nachrichtenfrequenz,
  • $A_{\rm T}$ die Trägeramplitude.


Der Parameter der Besselfunktionen ist bei dieser Anwendung der Modulationsindex $\eta$.

Anhand der Grafik sind folgende Aussagen möglich:

  • $S_+(f)$ besteht hier aus unendlich vielen diskreten Linien im Abstand von $f_{\rm N}$.
  • Es ist somit prinzipiell unendlich weit ausgedehnt.
  • Die Gewichte der Spektrallinien bei $f_{\rm T} + n · f_{\rm N}$ ($n$ ganzzahlig) sind durch den Modulationsindex $η$ über die Besselfunktionen ${\rm J}_n(η)$ festgelegt.
  • Die Spektrallinien sind bei sinusförmigem Quellensignal und cosinusförmigem Träger reell und für gerades $n$ symmetrisch um $f_{\rm T}$.
  • Bei ungeradem $n$ ist ein Vorzeichenwechsel entsprechend der $\text{Eigenschaft (B)}$ zu berücksichtigen.
  • Die Phasenmodulation einer Schwingung mit anderer Phase von Quellen– und/oder Trägersignal liefert das gleiche Betragsspektrum.



Anwendungen der Besselfunktionen

Die Anwendungen der Besselfunktionen in den Natur– und Ingenieurswissenschaften sind vielfältig und spielen eine wichtige Rolle in der Physik, zum Beispiel:

  • Untersuchung von Eigenschwingungen von zylindrischen Resonatoren,
  • Lösung der radialen Schrödinger–Gleichung,
  • Schalldruckamplituden von dünnflüssgigen Rotationsströmen,
  • Wärmeleitung in zylindrischen Körpern,
  • Streuungsproblem eines Gitters,
  • Dynamik von Schwingkörpern,
  • Winkelauflösung.


Man zählt die Besselfunktionen wegen ihrer vielfältigen Anwendungen in der mathematischen Physik zu den speziellen Funktionen.

Wir beschränken uns im Folgenden auf einige Gebiete, die in unserem Lerntutorial $\rm LNTwww$ angesprochen werden.

$\text{Beispiel (C):} \hspace{0.5cm} \text{Einsatz in der Spektralanalyse} \ \Rightarrow \ \text{Kaiser-Bessel-Filter}$

Als spektralen Leckeffekt bezeichnet man die Verfälschung des Spektrums eines periodischen und damit zeitlich unbegrenzten Signals aufgrund der impliziten Zeitbegrenzung der Diskreten Fouriertransformation (DFT). Dadurch werden zum Beispiel von einem Spektrumanalyzer

  • im Zeitsignal nicht vorhandene Frequenzanteile vorgetäuscht, und/oder
  • tatsächlich vorhandene Spektralkomponenten durch Seitenkeulen verdeckt.


Aufgabe der Spektralanalyse ist es, durch die Bereitstellung geeigneter Fensterfunktionen den Einfluss des spektralen Leckeffektes zu begrenzen.

Eine solche Fensterfunktion liefert zum Beispiel das Kaiser–Bessel–Fenster   ⇒   siehe Abschnitt Spezielle Fensterfunktionen. Dessen zeitdiskrete Fensterfunktion lautet mit der Besselfunktion nullter Ordnung   ⇒   ${\rm J}_0(x)$, dem Parameter $\alpha=3.5$ und der Fensterlänge $N$:

$$w_\nu = \frac{ {\rm J}_0\big(\pi \cdot \alpha \cdot \sqrt{1 - (2\nu/N)^2}\big)}{ {\rm J}_0\big(\pi \cdot \alpha \big)}.$$

Auf der Seite Gütekriterien von Fensterfunktionen sind unter anderem die Kenngrößen des Kaiser–Bessel–Fensters angegeben:

  • Günstig sind der große "Minimale Abstand zwischen Hauptkeule und Seitenkeulen" und der gewünschte kleine "Maximale Skalierungsfehler".
  • Aufgrund der sehr großen "Äquivalenten Rauschbreite" schneidet das Kaiser–Bessel–Fenster im wichtigsten Vergleichskriterium "Maximaler Prozessverlust" allerdings schlechter ab als die etablierten Hamming– und Hanning–Fenster.


$\text{Beispiel (D):} \hspace{0.5cm} \text{Rice-Fading-Kanalmodell}$

Die Rayleigh–Verteilung beschreibt den Mobilfunkkanal unter der Annahme, dass kein direkter Pfad vorhanden ist und sich somit der multiplikative Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ allein aus diffus gestreuten Komponenten zusammensetzt.

Bei Vorhandensein einer Direktkomponente (englisch: Line of Sight, LoS) muss man im Modell zu den mittelwertfreien Gaußprozessen $x(t)$ und $y(t)$ noch Gleichkomponenten $x_0$ und/oder $y_0$ hinzufügen:

Rice-Fading-Kanalmodell

$$\hspace{0.2cm}x(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} x(t) +x_0 \hspace{0.05cm}, \hspace{0.2cm} y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} y(t) +y_0\hspace{0.05cm},$$

$$\hspace{0.2cm}z(t) = x(t) + {\rm j} \cdot y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} z(t) +z_0 \hspace{0.05cm},\hspace{0.2cm} z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.$$

Die Grafik zeigt dieses Rice–Fading–Kanalmodell. Es lässt sich wie folgt zusammenfassen:

  • Der Realteil $x(t)$ ist gaußverteilt mit Mittelwert $x_0$ und Varianz $\sigma ^2$.
  • Der Imaginärteil $y(t)$ ist ebenfalls gaußverteilt (Mittelwert $y_0$, gleiche Varianz $\sigma ^2$) sowie unabhängig von $x(t)$.
  • Für $z_0 \ne 0$ ist der Betrag $\vert z(t)\vert$ riceverteilt, woraus die Bezeichnung "Rice–Fading" herrührt.
  • Zur Vereinfachung der Schreibweise setzen wir $\vert z(t)\vert = a(t)$. Für $a < 0$ ist die Betrags–WDF $f_a(a) \equiv 0$.
  • Für $a \ge 0$ gilt folgende Gleichung, wobei ${\rm I_0}(x)$ die modifizierte Besselfunktion nullter Ordnung bezeichnet:
$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm e}^{ - (a^2 + \vert z_0 \vert ^2)/(2\sigma^2)} \cdot {\rm I}_0 \left [ \frac{a \cdot \vert z_0 \vert}{\sigma^2} \right ] \hspace{0.5cm}\text{mit}\hspace{0.5cm}{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) = \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k} }{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.$$
  • Zwischen der modifizierten Besselfunktion und der herkömmlichen Besselfunktion ${\rm I_0}(x)$ – jeweils erster Art – besteht also der Zusammenhang ${\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u)$.


$\text{Beispiel (E):} \hspace{0.5cm} \text{Analyse des Frequenzspektrums von frequenzmodulierten Signalen}$

Im $\text{Beispiel (B)}$ wurde bereits gezeigt, dass die Winkelmodulation einer harmonischen Schwingung der Frequenz $f_{\rm N}$ zu einem Linienspektrum führt. Die Spektrallinien liegen um die Trägerfrequenz $f_{\rm T}$ bei $f_{\rm T} + n \cdot f_{\rm N}$ mit $n \in \{ \ \text{...}, -2, -1, \ 0, +1, +2, \text{...} \ \}$. Die Gewichte der Diraclinien sind ${\rm J }_n(\eta)$, abhängig vom Modulationsindex $\eta$.

Diskrete Spektren bei Phasenmodulation (links) und Frequenzmodulation (rechts)

Die Grafik zeigt das Betragsspektrum $\vert S_{\rm +}(f) \vert$ des analytischen Signals bei Phasenmodulation (PM) und Frequenzmodulation (FM). Darunter versteht man zwei unterschiedliche Formen der Winkelmodulation (WM).       Hinweis:   Alle Bessellinien mit Beträgen kleiner als $0.03$ sind in der Grafik vernachlässigt.

Für die obere Bildhälfte sind die Modulatorparameter so gewählt, dass sich für $f_{\rm N} = 5 \ \rm kHz$ jeweils ein Besselspektrum mit dem Modulationsindex $η = 1.5$ ergibt. Lässt man die Phasenbeziehungen außer Acht, so ergeben sich für beide Systeme gleiche Spektren und damit auch gleiche Signale.

Die unteren Grafiken gelten bei sonst gleichen Einstellungen für die Nachrichtenfrequenz $f_{\rm N} = 3 \ \rm kHz$. Man erkennt:

  • Bei der Phasenmodulation ergibt sich gegenüber $f_{\rm N} = 5 \ \rm kHz$ eine schmalere Spektralfunktion, da nun der Abstand der Bessellinien nur mehr $3 \ \rm kHz$ beträgt. Da bei PM der Modulationsindex unabhängig von $f_{\rm N}$ ist, ergeben sich die gleichen Besselgewichte wie bei $f_{\rm N} = 5 \ \rm kHz$.
  • Auch bei der Frequenzmodulation treten nun die Bessellinien im Abstand von $3 \ \rm kHz$ auf. Da aber bei FM der Modulationsindex umgekehrt proportional zu $f_{\rm N}$ ist, gibt es nun unten aufgrund des größeren Modulationsindex $η = 2.5$ deutlich mehr Bessellinien als im rechten oberen (für $η = 1.5$ gültigen) Diagramm.


Zur Handhabung des Applets

Bessel abzug3.png

    (A)     Summenformel der Besselfunktionen ${\rm J}_n(x)$

    (B)     Auswahl der Ordnung $n$ für die grafische Darstellung

    (C)     Grafische Darstellung der Besselfunktionen

    (D)     Variation der grafischen Darstellung

$\hspace{1.5cm}$"$+$" (Vergrößern),

$\hspace{1.5cm}$ "$-$" (Verkleinern)

$\hspace{1.5cm}$ "$\rm o$" (Zurücksetzen)

$\hspace{1.5cm}$ "$\leftarrow$" (Verschieben nach links), usw.

    (E)     Auswahl des Abszissenwertes $x_1$ für die linke Numerikausgabe

    (F)     Numerikausgabe der Besselfunktionswerte ${\rm J}_n(x_1)$

    (G)     Auswahl des Abszissenwertes $x_2$ für die rechte Numerikausgabe

    (F)     Numerikausgabe der Besselfunktionswerte ${\rm J}_n(x_2)$


Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Open Applet in a new tab