Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.6Z: Interpretation of the Frequency Response"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Lineare zeitinvariante Systeme" to "Category:Exercises for Linear and Time-Invariant Systems")
 
(20 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulsantwort und Eingangssignale]]  
+
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulse response and input signals]]  
Die Aufgabe soll den Einfluss eines Tiefpasses  H(f)  auf cosinusförmige Signale der Form
+
The task is meant to investigate the influence of a low-pass filter  H(f)  on cosinusoidal signals of the form
:xi(t)=Axcos(2πfit)
+
:$$x_i(t) = A_x \cdot {\rm cos}(2\pi  f_i  t ).$$  
veranschaulichen. In der Grafik sehen Sie die Signale  xi(t), wobei der Index  i  die Frequenz in  kHz  angibt. So beschreibt  x2(t)  ein  2kHz–Signal.
+
In the graph you can see the signals  xi(t) where the index i  indicates the frequency in kHz . So,  x2(t)  describes a  2kHz–signal.
  
Die Signalamplitude beträgt jeweils  Ax=1V. Das Gleichsignal  x0(t)  ist als Grenzfall eines Cosinussignals mit der Frequenz  f0=0 zu interpretieren.
+
The signal amplitude in each case is Ax=1V. The direct (DC) signal  x0(t)  is to be interpreted as a limiting case of a cosine signal with frequeny  f0=0.
  
Die obere Skizze zeigt die rechteckige Impulsantwort  h(t)  des Tiefpasses. Dessen Frequenzgang lautet:
+
The upper sketch shows the rectangular impulse response  h(t)  of the low-pass filter. Its frequency response is:
 
:H(f)=si(πf/Δf).
 
:H(f)=si(πf/Δf).
Aufgrund der Linearität und der Tatsache, dass  H(f)  reell und gerade ist, sind die Ausgangssignale ebenfalls cosinusförmig:
+
Due to linearity and the fact that H(f)  is real and even the output signals are also cosine-shaped:
 
:yi(t)=Aicos(2πfit).
 
:yi(t)=Aicos(2πfit).
*Gesucht werden die Signalamplituden  Ai  am Ausgang für verschiedene Frequenzen  fi, wobei die Lösung ausschließlich im Zeitbereich gefunden werden soll.  
+
*The signal amplitudes Ai  at the output for different frequencies  fi are searched-for and the solution is to be found in the time domain only.  
  
*Dieser etwas umständliche Lösungsweg soll dazu dienen, den grundsätzlichen Zusammenhang zwischen Zeit– und Frequenzbereich deutlich zu machen.
+
*This somewhat circuitous solution is intended to make the basic relationship between the time and frequency domains clear.
  
  
Line 25: Line 25:
  
  
''Hinweise:''  
+
''Please note:''  
*Die Aufgabe gehört zum Kapitel   [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].  
+
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].  
*Entgegen der sonst üblichen Definition der Amplitude können die „Ai” durchaus negativ sein. Dies entspricht dann der Funktion „Minus-Cosinus”.
+
*Contrary to the usual definition of the amplitude, the "Ai" may well be negative. Then, this corresponds to the function "minus-cosine".
 
   
 
   
  
Line 34: Line 34:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Tiefpass liegt hier vor?
+
{Which low-pass filter is at hand here?
 
|type="[]"}
 
|type="[]"}
- Idealer Tiefpass,
+
- Ideal low-pass filter,
+ Spalttiefpass,
+
+ slit low-pass filter,
- Gaußtiefpass.
+
- Gaussian low-pass filter.
  
  
{Geben Sie die äquivalente Bandbreite von&nbsp; H(f)&nbsp; an.
+
{State the equivalent bandwidth of&nbsp; H(f)&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
Δf =  { 2 3% }  kHz
 
Δf =  { 2 3% }  kHz
  
  
{Berechnen Sie allgemein die Amplitude&nbsp; Ai&nbsp; in Abhängigkeit von&nbsp; xi(t)&nbsp; und&nbsp; h(t). Welche der folgenden Punkte sind bei der Berechnung zu berücksichtigen?
+
{In general, compute the amplitude&nbsp; Ai&nbsp; as a function of&nbsp; xi(t)&nbsp; and&nbsp; h(t). Which of the following should be considered in the calculations?
 
|type="[]"}
 
|type="[]"}
+ Beim Cosinussignal gilt &nbsp;Ai=yi(t=0).
+
+ For the cosine signal, &nbsp;Ai=yi(t=0) holds.
- Es gilt &nbsp;yi(t)=xi(t)·h(t).
+
- The following holds: &nbsp;yi(t)=xi(t)·h(t).
+ Es gilt &nbsp;yi(t)=xi(t)h(t).
+
+ The following holds: &nbsp;yi(t)=xi(t)h(t).
  
  
{Welche der folgenden Ergebnisse treffen für&nbsp; A0,A2&nbsp; und&nbsp; A4&nbsp; zu? &nbsp; Es gilt weiterhin&nbsp; Ai=yi(t=0).
+
{Which of the following results are true for&nbsp; A0,A2&nbsp; and&nbsp; A4&nbsp;? &nbsp; The following still holds: &nbsp; Ai=yi(t=0).
 
|type="[]"}
 
|type="[]"}
 
- A0=0.
 
- A0=0.
Line 66: Line 66:
  
  
{Berechnen Sie die Amplituden&nbsp; A1&nbsp; und&nbsp; A3&nbsp; für ein&nbsp; 1 kHz&ndash; bzw.&nbsp; 3 kHz&ndash;Signal. <br>Interpretieren Sie die Ergebnisse anhand der Spektralfunktionen.
+
{Compute the amplitudes&nbsp; A1&nbsp; and&nbsp; A3&nbsp; for a&nbsp; 1 kHz&ndash; and&nbsp; 3 kHz&ndash;signal. <br>Interpret the results using the spectral functions.
 
|type="{}"}
 
|type="{}"}
 
A1 =  { 0.637 5%  }  V
 
A1 =  { 0.637 5%  }  V
Line 73: Line 73:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>: &nbsp; Es handelt sich um einen <u>Spalttiefpass</u>.
+
'''(1)'''&nbsp; <u>Approach 2</u> is correct: &nbsp; It is a <u>slit low-pass filter</u>.
  
  
'''(2)'''&nbsp; Die (äquivalente) Zeitdauer der Impulsantwort ist&nbsp; Δt = 0.5 \ \rm ms. &nbsp; Die äquivalente Bandbreite ist gleich dem Kehrwert:  
+
'''(2)'''&nbsp; The (equivalent) time duration of the impulse response is&nbsp; Δt = 0.5 \ \rm ms. &nbsp; The equivalent bandwidth is equal to the reciprocal:  
 
:Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.
 
:Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge  1 und 3</u>:
+
'''(3)'''&nbsp; <u>Approaches 1 and 3</u> are correct:
*Da&nbsp; y_i(t)&nbsp; cosinusförmig ist, ist die Amplitude&nbsp; $A_i = y_i(t = 0)$. Das Ausgangssignal wird hier über die Faltung berechnet:
+
*The amplitude is&nbsp; $A_i = y_i(t = 0)$ since&nbsp; y_i(t)&nbsp; is cosine-shaped. The output signal is calculated by convolution for this purpose:
 
:A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau  )}  \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.
 
:A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau  )}  \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.
*Berücksichtigt man die Symmetrie und die zeitliche Begrenzung von&nbsp; h(t), so kommt man zum Ergebnis:
+
*Considering the symmetry and the time limitation of&nbsp; h(t) the following result is obtained:
 
:A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi  f_i  \tau )\hspace{0.1cm}{\rm d}\tau.
 
:A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi  f_i  \tau )\hspace{0.1cm}{\rm d}\tau.
  
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge  2, 3 und 5</u>:
+
'''(4)'''&nbsp; <u>Approaches 2, 3 and 5</u> are correct:
*Beim Gleichsignal &nbsp;x_0(t) = A_x&nbsp; ist &nbsp;f_i = 0&nbsp; zu setzen und man erhält &nbsp;A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}.
+
*For the direct (DC) signal  &nbsp;x_0(t) = A_x&nbsp;, set &nbsp;f_i = 0&nbsp; and one obtains &nbsp;A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}.
*Dagegen verschwindet bei den Cosinusfrequenzen &nbsp;f_2 = 2 \ \rm kHz&nbsp; und &nbsp;f_4 = 4 \ \rm kHz&nbsp; jeweils das Integral, da dann genau über eine bzw. zwei Periodendauern zu integrieren ist: &nbsp; A_2 \ \rm \underline{ = \hspace{0.05cm} 0}&nbsp; und&nbsp; A_4 \hspace{0.05cm} \rm \underline{ = \ 0}.
+
*In contrast to this, for the cosine frequencies &nbsp;f_2 = 2 \ \rm kHz&nbsp; and &nbsp;f_4 = 4 \ \rm kHz&nbsp; the integral vanishes in each case because then it is integrated over one and two periods, respectively: &nbsp; A_2 \ \rm \underline{ = \hspace{0.05cm} 0}&nbsp; und&nbsp; A_4 \hspace{0.05cm} \rm \underline{ = \ 0}.
*Im Frequenzbereich entsprechen die hier behandelten Fälle:
+
*In the frequency domain, the cases which are dealt with here correspond to:
 
:H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.
 
:H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.
  
  
  
'''(5)'''&nbsp; Das Ergebnis der Teilaufgabe&nbsp; '''(3)'''&nbsp; lautet unter Berücksichtigung der Symmetrie für&nbsp; f_i = f_1:
+
'''(5)'''&nbsp; The result of subtask&nbsp; '''(3)'''&nbsp; – considering the symmetry – is for&nbsp; f_i = f_1:
 
:$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{  \Delta t /2 } {\rm cos}(2\pi  f_1  \tau )\hspace{0.1cm}{\rm
 
:$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{  \Delta t /2 } {\rm cos}(2\pi  f_1  \tau )\hspace{0.1cm}{\rm
 
  d}\tau =  \frac{2A_x}{2\pi  f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi  f_1  \frac{\Delta t}{2}
 
  d}\tau =  \frac{2A_x}{2\pi  f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi  f_1  \frac{\Delta t}{2}
 
  )= A_x \cdot {\rm si}(\pi  f_1  \Delta t ).$$
 
  )= A_x \cdot {\rm si}(\pi  f_1  \Delta t ).$$
*Mit&nbsp; f_1 · Δt = 0.5&nbsp; lautet somit das Ergebnis:
+
*Taking &nbsp; f_1 · Δt = 0.5&nbsp;into account the result is:
 
:A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
 
:A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
*Entsprechend erhält man mit&nbsp; f_3 · Δt = 1.5:
+
*Correspondingly, the following is obtained using&nbsp; f_3 · Δt = 1.5:
 
:A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
 
:A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
*Genau zu den gleichen Ergebnissen aber deutlich schneller kommt man durch die Anwendung der Gleichung:
+
*The exact same results are obtained but much faster by applying the equation:
 
:A_i = A_x · H(f = f_i).
 
:A_i = A_x · H(f = f_i).
  
*Bereits aus den Grafiken auf der Angabenseite erkennt man, dass das Integral über&nbsp; x_1(t)&nbsp; im markierten Bereich positiv und das Integral über&nbsp; x_3(t)&nbsp; negativ ist.  
+
*From the graphs on the information page it is already obvious that the integral over&nbsp; x_1(t)&nbsp; is positive in the marked area and the integral over&nbsp; x_3(t)&nbsp; is negative.  
*Es ist allerdings anzumerken, dass man im Allgemeinen als Amplitude meist den Betrag bezeichnet (siehe Hinweis auf der Angabenseite).
+
*However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 116: Line 116:
  
  
[[Category:Exercises for Linear and Time-Invariant Systems|^1.3 Einige systemtheoretische Tiefpassfunktionen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 19:33, 7 September 2021

Impulse response and input signals

The task is meant to investigate the influence of a low-pass filter  H(f)  on cosinusoidal signals of the form

x_i(t) = A_x \cdot {\rm cos}(2\pi f_i t ).

In the graph you can see the signals  x_i(t) where the index i  indicates the frequency in \rm kHz . So,  x_2(t)  describes a  2 \hspace{0.09cm} \rm kHz–signal.

The signal amplitude in each case is A_x = 1 \hspace{0.05cm} \rm V. The direct (DC) signal  x_0(t)  is to be interpreted as a limiting case of a cosine signal with frequeny  f_0 =0.

The upper sketch shows the rectangular impulse response  h(t)  of the low-pass filter. Its frequency response is:

H(f) = {\rm si}(\pi {f}/{ {\rm \Delta}f}) .

Due to linearity and the fact that H(f)  is real and even the output signals are also cosine-shaped:

y_i(t) = A_i \cdot {\rm cos}(2\pi f_i t ) .
  • The signal amplitudes A_i  at the output for different frequencies  f_i are searched-for and the solution is to be found in the time domain only.
  • This somewhat circuitous solution is intended to make the basic relationship between the time and frequency domains clear.





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • Contrary to the usual definition of the amplitude, the "A_i" may well be negative. Then, this corresponds to the function "minus-cosine".




Questions

1

Which low-pass filter is at hand here?

Ideal low-pass filter,
slit low-pass filter,
Gaussian low-pass filter.

2

State the equivalent bandwidth of  H(f) .

\Delta f \ =\

\ \rm kHz

3

In general, compute the amplitude  A_i  as a function of  x_i(t)  and  h(t). Which of the following should be considered in the calculations?

For the cosine signal,  A_i = y_i(t = 0) holds.
The following holds:  y_i(t) = x_i(t) · h(t).
The following holds:  y_i(t) = x_i(t) ∗ h(t).

4

Which of the following results are true for  A_0, A_2  and  A_4 ?   The following still holds:   A_i = y_i(t = 0).

A_0 = 0.
A_0 = 1 \hspace{0.05cm} \rm V .
A_2 = 0.
A_2 = 1 \hspace{0.05cm} \rm V .
A_4 = 0.
A_4 =1 \hspace{0.05cm} \rm V .

5

Compute the amplitudes  A_1  and  A_3  for a  1 \ \rm kHz– and  3 \ \rm kHz–signal.
Interpret the results using the spectral functions.

A_1 \ = \

\ \rm V
A_3 \ = \

\ \rm V


Solution

(1)  Approach 2 is correct:   It is a slit low-pass filter.


(2)  The (equivalent) time duration of the impulse response is  Δt = 0.5 \ \rm ms.   The equivalent bandwidth is equal to the reciprocal:

Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.


(3)  Approaches 1 and 3 are correct:

  • The amplitude is  A_i = y_i(t = 0) since  y_i(t)  is cosine-shaped. The output signal is calculated by convolution for this purpose:
A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau )} \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.
  • Considering the symmetry and the time limitation of  h(t) the following result is obtained:
A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi f_i \tau )\hspace{0.1cm}{\rm d}\tau.


(4)  Approaches 2, 3 and 5 are correct:

  • For the direct (DC) signal  x_0(t) = A_x , set  f_i = 0  and one obtains  A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}.
  • In contrast to this, for the cosine frequencies  f_2 = 2 \ \rm kHz  and  f_4 = 4 \ \rm kHz  the integral vanishes in each case because then it is integrated over one and two periods, respectively:   A_2 \ \rm \underline{ = \hspace{0.05cm} 0}  und  A_4 \hspace{0.05cm} \rm \underline{ = \ 0}.
  • In the frequency domain, the cases which are dealt with here correspond to:
H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.


(5)  The result of subtask  (3)  – considering the symmetry – is for  f_i = f_1:

A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{ \Delta t /2 } {\rm cos}(2\pi f_1 \tau )\hspace{0.1cm}{\rm d}\tau = \frac{2A_x}{2\pi f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi f_1 \frac{\Delta t}{2} )= A_x \cdot {\rm si}(\pi f_1 \Delta t ).
  • Taking   f_1 · Δt = 0.5 into account the result is:
A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
  • Correspondingly, the following is obtained using  f_3 · Δt = 1.5:
A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
  • The exact same results are obtained – but much faster – by applying the equation:
A_i = A_x · H(f = f_i).
  • From the graphs on the information page it is already obvious that the integral over  x_1(t)  is positive in the marked area and the integral over  x_3(t)  is negative.
  • However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).