Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.6Z: Interpretation of the Frequency Response"

From LNTwww
 
(8 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulse response and input signals]]  
 
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulse response and input signals]]  
The task is to investigate the influence of a low-pass filter  H(f)  on cosinusoidal signals of the form
+
The task is meant to investigate the influence of a low-pass filter  H(f)  on cosinusoidal signals of the form
 
:xi(t)=Axcos(2πfit).  
 
:xi(t)=Axcos(2πfit).  
In the graph you can see the signals  xi(t), where the index i  indicates the frequency in kHz . So,  x2(t)  describes a  2kHz–signal.
+
In the graph you can see the signals  xi(t) where the index i  indicates the frequency in kHz . So,  x2(t)  describes a  2kHz–signal.
  
 
The signal amplitude in each case is Ax=1V. The direct (DC) signal  x0(t)  is to be interpreted as a limiting case of a cosine signal with frequeny  f0=0.
 
The signal amplitude in each case is Ax=1V. The direct (DC) signal  x0(t)  is to be interpreted as a limiting case of a cosine signal with frequeny  f0=0.
Line 26: Line 26:
  
 
''Please note:''  
 
''Please note:''  
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory| Some Low-Pass Functions in Systems Theory]].  
+
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].  
*Contrary to the usual definition of the amplitude, the "Ai" may well be negative. This corresponds then to the function „minus-cosine”.
+
*Contrary to the usual definition of the amplitude, the "Ai" may well be negative. Then, this corresponds to the function "minus-cosine".
 
   
 
   
  
Line 91: Line 91:
  
 
'''(4)'''&nbsp; <u>Approaches 2, 3 and 5</u> are correct:
 
'''(4)'''&nbsp; <u>Approaches 2, 3 and 5</u> are correct:
*For the direct (DC) signal  &nbsp;x0(t)=Ax&nbsp; set &nbsp;fi=0&nbsp; and one obtains &nbsp;A0=Ax = 1V_.
+
*For the direct (DC) signal  &nbsp;x0(t)=Ax&nbsp;, set &nbsp;fi=0&nbsp; and one obtains &nbsp;A0=Ax = 1V_.
 
*In contrast to this, for the cosine frequencies &nbsp;f2=2 kHz&nbsp; and &nbsp;f4=4 kHz&nbsp; the integral vanishes in each case because then it is integrated over one and two periods, respectively: &nbsp; A2 =0_&nbsp; und&nbsp; A4= 0_.
 
*In contrast to this, for the cosine frequencies &nbsp;f2=2 kHz&nbsp; and &nbsp;f4=4 kHz&nbsp; the integral vanishes in each case because then it is integrated over one and two periods, respectively: &nbsp; A2 =0_&nbsp; und&nbsp; A4= 0_.
*In the frequency domain, the case which are dealt with here correspond to:
+
*In the frequency domain, the cases which are dealt with here correspond to:
 
:H(f=0)=1,H(f=Δf)=0,H(f=2Δf)=0.
 
:H(f=0)=1,H(f=Δf)=0,H(f=2Δf)=0.
  
  
  
'''(5)'''&nbsp; The result of the subtask&nbsp; '''(3)'''&nbsp; - considering the symmetry - is for&nbsp; fi=f1:
+
'''(5)'''&nbsp; The result of subtask&nbsp; '''(3)'''&nbsp; considering the symmetry is for&nbsp; fi=f1:
 
:$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{  \Delta t /2 } {\rm cos}(2\pi  f_1  \tau )\hspace{0.1cm}{\rm
 
:$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{  \Delta t /2 } {\rm cos}(2\pi  f_1  \tau )\hspace{0.1cm}{\rm
 
  d}\tau =  \frac{2A_x}{2\pi  f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi  f_1  \frac{\Delta t}{2}
 
  d}\tau =  \frac{2A_x}{2\pi  f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi  f_1  \frac{\Delta t}{2}
 
  )= A_x \cdot {\rm si}(\pi  f_1  \Delta t ).$$
 
  )= A_x \cdot {\rm si}(\pi  f_1  \Delta t ).$$
*Mit&nbsp; f_1 · Δt = 0.5&nbsp; lautet somit das Ergebnis:
+
*Taking &nbsp; f_1 · Δt = 0.5&nbsp;into account the result is:
 
:A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
 
:A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
*Entsprechend erhält man mit&nbsp; f_3 · Δt = 1.5:
+
*Correspondingly, the following is obtained using&nbsp; f_3 · Δt = 1.5:
 
:A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
 
:A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
*Genau zu den gleichen Ergebnissen aber deutlich schneller kommt man durch die Anwendung der Gleichung:
+
*The exact same results are obtained but much faster by applying the equation:
 
:A_i = A_x · H(f = f_i).
 
:A_i = A_x · H(f = f_i).
  
*Bereits aus den Grafiken auf der Angabenseite erkennt man, dass das Integral über&nbsp; x_1(t)&nbsp; im markierten Bereich positiv und das Integral über&nbsp; x_3(t)&nbsp; negativ ist.  
+
*From the graphs on the information page it is already obvious that the integral over&nbsp; x_1(t)&nbsp; is positive in the marked area and the integral over&nbsp; x_3(t)&nbsp; is negative.  
*Es ist allerdings anzumerken, dass man im Allgemeinen als Amplitude meist den Betrag bezeichnet (siehe Hinweis auf der Angabenseite).
+
*However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 19:33, 7 September 2021

Impulse response and input signals

The task is meant to investigate the influence of a low-pass filter  H(f)  on cosinusoidal signals of the form

x_i(t) = A_x \cdot {\rm cos}(2\pi f_i t ).

In the graph you can see the signals  x_i(t) where the index i  indicates the frequency in \rm kHz . So,  x_2(t)  describes a  2 \hspace{0.09cm} \rm kHz–signal.

The signal amplitude in each case is A_x = 1 \hspace{0.05cm} \rm V. The direct (DC) signal  x_0(t)  is to be interpreted as a limiting case of a cosine signal with frequeny  f_0 =0.

The upper sketch shows the rectangular impulse response  h(t)  of the low-pass filter. Its frequency response is:

H(f) = {\rm si}(\pi {f}/{ {\rm \Delta}f}) .

Due to linearity and the fact that H(f)  is real and even the output signals are also cosine-shaped:

y_i(t) = A_i \cdot {\rm cos}(2\pi f_i t ) .
  • The signal amplitudes A_i  at the output for different frequencies  f_i are searched-for and the solution is to be found in the time domain only.
  • This somewhat circuitous solution is intended to make the basic relationship between the time and frequency domains clear.





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • Contrary to the usual definition of the amplitude, the "A_i" may well be negative. Then, this corresponds to the function "minus-cosine".




Questions

1

Which low-pass filter is at hand here?

Ideal low-pass filter,
slit low-pass filter,
Gaussian low-pass filter.

2

State the equivalent bandwidth of  H(f) .

\Delta f \ =\

\ \rm kHz

3

In general, compute the amplitude  A_i  as a function of  x_i(t)  and  h(t). Which of the following should be considered in the calculations?

For the cosine signal,  A_i = y_i(t = 0) holds.
The following holds:  y_i(t) = x_i(t) · h(t).
The following holds:  y_i(t) = x_i(t) ∗ h(t).

4

Which of the following results are true for  A_0, A_2  and  A_4 ?   The following still holds:   A_i = y_i(t = 0).

A_0 = 0.
A_0 = 1 \hspace{0.05cm} \rm V .
A_2 = 0.
A_2 = 1 \hspace{0.05cm} \rm V .
A_4 = 0.
A_4 =1 \hspace{0.05cm} \rm V .

5

Compute the amplitudes  A_1  and  A_3  for a  1 \ \rm kHz– and  3 \ \rm kHz–signal.
Interpret the results using the spectral functions.

A_1 \ = \

\ \rm V
A_3 \ = \

\ \rm V


Solution

(1)  Approach 2 is correct:   It is a slit low-pass filter.


(2)  The (equivalent) time duration of the impulse response is  Δt = 0.5 \ \rm ms.   The equivalent bandwidth is equal to the reciprocal:

Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.


(3)  Approaches 1 and 3 are correct:

  • The amplitude is  A_i = y_i(t = 0) since  y_i(t)  is cosine-shaped. The output signal is calculated by convolution for this purpose:
A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau )} \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.
  • Considering the symmetry and the time limitation of  h(t) the following result is obtained:
A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi f_i \tau )\hspace{0.1cm}{\rm d}\tau.


(4)  Approaches 2, 3 and 5 are correct:

  • For the direct (DC) signal  x_0(t) = A_x , set  f_i = 0  and one obtains  A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}.
  • In contrast to this, for the cosine frequencies  f_2 = 2 \ \rm kHz  and  f_4 = 4 \ \rm kHz  the integral vanishes in each case because then it is integrated over one and two periods, respectively:   A_2 \ \rm \underline{ = \hspace{0.05cm} 0}  und  A_4 \hspace{0.05cm} \rm \underline{ = \ 0}.
  • In the frequency domain, the cases which are dealt with here correspond to:
H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.


(5)  The result of subtask  (3)  – considering the symmetry – is for  f_i = f_1:

A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{ \Delta t /2 } {\rm cos}(2\pi f_1 \tau )\hspace{0.1cm}{\rm d}\tau = \frac{2A_x}{2\pi f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi f_1 \frac{\Delta t}{2} )= A_x \cdot {\rm si}(\pi f_1 \Delta t ).
  • Taking   f_1 · Δt = 0.5 into account the result is:
A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.
  • Correspondingly, the following is obtained using  f_3 · Δt = 1.5:
A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.
  • The exact same results are obtained – but much faster – by applying the equation:
A_i = A_x · H(f = f_i).
  • From the graphs on the information page it is already obvious that the integral over  x_1(t)  is positive in the marked area and the integral over  x_3(t)  is negative.
  • However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).