Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.2: Distortion Power"

From LNTwww
 
(16 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
A rectangular pulse x(t)  with amplitude 1V  and duration 4ms  is applied to the input of a communication system. Then, the pulse y1(t) , whose signal parameters can be taken from the middle sketch, is measured at the system output.
 
A rectangular pulse x(t)  with amplitude 1V  and duration 4ms  is applied to the input of a communication system. Then, the pulse y1(t) , whose signal parameters can be taken from the middle sketch, is measured at the system output.
  
Am Ausgang eines anderen Systems  S2  stellt sich bei gleichem Eingangssignal  $x(t)$  das in dem unteren Bild dargestellte Signal   $y_2(t)$  ein.
+
At the output of another system  S2 , the signal $y_2(t)$  shown in the lower sketch is obtained with the same input signal $x(t)$ .
  
Für das in dieser Aufgabe verwendete Fehlersignal gelte folgende Definition:
+
Let the following definition apply to the error signal used in this task:
 
:ε(t)=y(t)αx(tτ).
 
:ε(t)=y(t)αx(tτ).
Die Parameter  α  und  τ  sind so zu bestimmen, dass die Verzerrungsleistung (der mittlere quadratische Fehler) minimal ist. Für diese gilt:
+
The parameters α  and  τ  are to be determined such that the distortion power (the mean squared error) is minimal. For this, the following holds:
 
:$$P_{\rm V}  = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int\limits_{ ( T_{\rm M})}
 
:$$P_{\rm V}  = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int\limits_{ ( T_{\rm M})}
 
  {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t$$
 
  {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t$$
  
Bei diesen Definitionen ist bereits berücksichtigt, dass eine frequenzunabhängige Dämpfung ebenso wie eine für alle Frequenzen konstante Laufzeit nicht zur Verzerrung beiträgt.
+
These definitions already take into account that a frequency-independent damping just as a runtime which is constant for all frequencies does not contribute to the distortion.
  
Das Integrationsintervall ist jeweils geeignet zu wählen:  
+
The integration interval has to be chosen appropriately in each case:  
*Benutzen Sie für  y1(t)  den Bereich von  0 ... 4ms  und für   $y_2(t)$  das Intervall  1ms ... 5ms.  
+
*Use the interval  0 ... 4ms  for $y_1(t)$  and the interval  1ms ... 5ms for   y2(t) .  
*Damit  beträgt in beiden Fällen die Messdauer  TM=4ms.  
+
*Thus, the measurement time is TM=4ms in both cases.  
*Es ist offensichtlich, dass bezüglich  y1(t)  die Parameter  α=1  und  τ=0  jeweils zur minimalen Verzerrungsleistung führen.
+
*It is obvious that with respect to y1(t)  the parameters  α=1  and  τ=0  respectively result in the minimum distortion power.
  
  
Das so genannte Signal–zu–Verzerrungs–Leistungsverhältnis berechnet sich im allgemeinen Fall zu
+
In general, the so-called signal–to–distortion–power ratio is given by the following formula
 
:ρV=α2PxPV.
 
:ρV=α2PxPV.
  
Hierbei bezeichnet
+
Here,
*Px  die Leistung des Signals  x(t), und
+
*Px  denotes the power of the signal x(t), and
*α2Px  die Leistung von  y(t)=αx(tτ), die sich bei Abwesenheit von Verzerrungen ergeben würde.  
+
*α2Px  denotes the power of y(t)=αx(tτ), that would arise as aresult in the absence of distortion.  
  
  
Meist – so auch in dieser Aufgabe – wird dieses S/N-Verhältnis  ρV  logarithmisch in  dB  angegeben.
+
Usually, – as also in this task– this S/N-ratio  ρV  is given logarithmically in  dB .
  
  
Line 48: Line 48:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie die Verzerrungsleistung des Systems&nbsp; S1.
+
{Determine the distortion power of the system&nbsp; S1.
 
|type="{}"}
 
|type="{}"}
 
PV1 =   { 5 3% }  103 V2
 
PV1 =   { 5 3% }  103 V2
  
  
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für System&nbsp; S1.
+
{Compute the signal&ndash;to&ndash;distortion&ndash;power ratio for system&nbsp; S1.
 
|type="{}"}
 
|type="{}"}
 
10lg ρV1 =   { 23.01 3% }  dB
 
10lg ρV1 =   { 23.01 3% }  dB
  
  
{Welche Parameter&nbsp; α&nbsp; und&nbsp; τ&nbsp; sollten zur Berechnung der Verzerrungsleistung des Systems&nbsp; S2&nbsp; herangezogen werden? <br>Begründen Sie Ihr Ergebnis.
+
{What parameters&nbsp; α&nbsp; and&nbsp; τ&nbsp; should be used to calculate the distortion power of the system&nbsp; S2&nbsp;? <br>Justify your result.
 
|type="{}"}
 
|type="{}"}
 
α =   { 0.5 3% }
 
α =   { 0.5 3% }
Line 64: Line 64:
  
  
{Ermitteln Sie die Verzerrungsleistung des Systems&nbsp; S2.
+
{Determine the distortion power of the system&nbsp; S2.
 
|type="{}"}
 
|type="{}"}
 
PV2 =   { 5 3% }  103 V2
 
PV2 =   { 5 3% }  103 V2
  
  
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für das System&nbsp; S2. <br>Interpretieren Sie die unterschiedlichen Ergebnisse.
+
{Compute the signal&ndash;to&ndash;distortion&ndash;power ratio for the system&nbsp; S2. <br>Interpret the different results.
 
|type="{}"}
 
|type="{}"}
 
10lg ρV2 =  { 16.99 3% }  dB
 
10lg ρV2 =  { 16.99 3% }  dB
Line 79: Line 79:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID915__LZI_A_2_2_a.png|right|frame|Resultierende Fehlersignale]]
+
[[File:P_ID915__LZI_A_2_2_a.png|right|frame|Resulting error signals]]
'''(1)'''&nbsp; Mit den gegebenen Parametern &nbsp;α=1&nbsp; und &nbsp;τ=0&nbsp; erhält man das in der Grafik dargestellte Fehlersignal&nbsp; ε1(t). Die Verzerrungsleistung ist somit gleich:
+
'''(1)'''&nbsp; The error signal&nbsp; ε1(t) shown in the graph is obtained with the given parameters&nbsp;α=1&nbsp; and &nbsp;τ=0&nbsp;. The distortion power is thus equal to:
 
:$$P_{\rm V1}  =  \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \big[ ({0.1 \, \rm V})^2  +
 
:$$P_{\rm V1}  =  \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \big[ ({0.1 \, \rm V})^2  +
 
   ({-0.1 \, \rm V})^2\big]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}. $$
 
   ({-0.1 \, \rm V})^2\big]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}. $$
Line 86: Line 86:
  
  
'''(2)'''&nbsp; Die Leistung des Eingangssignals beträgt:
+
'''(2)'''&nbsp; The power of the input signal is:
 
:Px=14ms(1V)24ms=1V2.
 
:Px=14ms(1V)24ms=1V2.
  
*Mit dem Ergebnis aus&nbsp; '''(1)'''&nbsp; erhält man somit für das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis:
+
*The following is obtained for the signal&ndash;to&ndash;distortion&ndash;power ratio with the result from&nbsp; '''(1)'''&nbsp;:
 
$$\rho_{\rm V1} = \frac{  P_{x}}{P_{\rm V1}}= \frac{  {1 \, \rm
 
$$\rho_{\rm V1} = \frac{  P_{x}}{P_{\rm V1}}= \frac{  {1 \, \rm
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
Line 96: Line 96:
  
  
'''(3)'''&nbsp; Die Skizze auf dem Angabenblatt macht deutlich, dass sich auch ohne die auftretenden Verzerrungen &ndash; sondern allein durch Dämpfung und Laufzeit das Signal &nbsp;y(t)&nbsp; von &nbsp;x(t)&nbsp; &ndash; deutlich unterscheiden würde.  
+
'''(3)'''&nbsp; The sketch on the information sheet makes it clear that even without the distortions occuring &ndash; but due to attenuation and runtime alone &ndash; the signal&nbsp;y(t)&nbsp; would differ significantly from&nbsp;x(t)&nbsp;.  
*Es würde sich &nbsp;y(t)=0.5x(t1 ms)&nbsp; ergeben.
+
*The following would arise as a result: &nbsp;y(t)=0.5x(t1 ms)&nbsp;.
  
*Wenn jemand diese Werte nicht sofort aus der Grafik erkennt, so müsste er für sehr (unendlich) viele &nbsp;α&ndash;&nbsp; und &nbsp;τ&ndash;Werte zunächst das Fehlersignal
+
*If someone does not immediately perceive these values from the graph, then first the error signal
 
:ε2(t)=y2(t)αx(tτ)
 
:ε2(t)=y2(t)αx(tτ)
  
:und anschließend den mittleren quadratischen Fehler ermitteln, wobei das Integrationsintervall jeweils an &nbsp;τ&nbsp; anzupassen ist.  
+
:and afterwards the mean squared error for very (infinitely) many&nbsp;α&ndash;&nbsp; and &nbsp;τ&ndash;values would have to be determined, in doing so the integration interval is to be adjusted to&nbsp;τ&nbsp; in each case.  
*Auch dann würde man das kleinstmögliche Ergebnis für &nbsp;α=0.5_&nbsp; und &nbsp;τ=1 ms_&nbsp; erhalten. Für diese Optimierung von &nbsp;α&nbsp; und &nbsp;τ&nbsp; sollte man sich allerdings schon ein Computerprogramm gönnen.
+
*Then, the smallest possible result would also be obtained for&nbsp;α=0.5_&nbsp; and &nbsp;τ=1 ms_&nbsp;. However, for this optimization of&nbsp;α&nbsp; and &nbsp;τ&nbsp; the useage of a computer program should be granted.
  
  
  
'''(4)'''&nbsp; Die obige Skizze zeigt, dass &nbsp;ε2(t)&nbsp; bis auf eine Verschiebung um &nbsp;$1 \ \rm ms$&nbsp; gleich dem Fehlersignal &nbsp;$\varepsilon_1(t)$&nbsp; ist. Mit dem Integrationsintervall &nbsp;1 ms ... 5 ms&nbsp; ergibt sich somit auch die gleiche Verzerrungsleistung:
+
'''(4)'''&nbsp; The above sketch shows that&nbsp;ε2(t)&nbsp; is equal to the error signal&nbsp;$\varepsilon_1(t)$&nbsp; except for a shift by&nbsp;$1 \ \rm ms$&nbsp;. Considering the integration interval&nbsp;1 ms ... 5 ms&nbsp; the same distortion power is obtained:
 
:PV2=PV1=5103V2_.
 
:PV2=PV1=5103V2_.
  
  
  
'''(5)'''&nbsp; Entsprechend dem Angabenblatt gilt:
+
'''(5)'''&nbsp; According to the information sheet the following holds:
 
:$$\rho_{\rm V2} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V2}}= \frac{ 0.5^2 \cdot {1 \, \rm
 
:$$\rho_{\rm V2} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V2}}= \frac{ 0.5^2 \cdot {1 \, \rm
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 50\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 50\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
  
*Trotz gleicher Verzerrungsleistung ist &nbsp;10lgρV2&nbsp; gegenüber &nbsp;10lgρV1&nbsp; um etwa &nbsp;6 dB&nbsp; geringer.  
+
*Despite the same distortion power&nbsp;10lgρV2&nbsp; is less than &nbsp;10lgρV1&nbsp; by about&nbsp;6 dB&nbsp;.  
*Das Signal &nbsp;y2(t)&nbsp; ist also hinsichtlich des SNR deutlich ungünstiger als &nbsp;y1(t).
+
*The signal&nbsp;y2(t)&nbsp; is thus significantly less favourable in terms of SNR than&nbsp;y1(t).
* Es ist berücksichtigt, dass nun wegen &nbsp;α=0.5&nbsp; die Leistung des Ausgangssignals nur noch ein Viertel der Eingangsleistung beträgt.
+
*It is considered that now the power of the output signal is only a quarter of the input power due to &nbsp;α=0.5&nbsp;.
*Würde man diese Dämpfung am Ausgang durch eine Verstärkung um 1/α kompensieren, so würde zwar die Verzerrungsleistung um α2 größer.  
+
*If this attenuation at the output was to be compensated by amplifying it by 1/α, the distortion power would indeed increase by α2.  
  
*Das Signal-zu-Verzerrungs-Leistungsverhältnis ρV2 bliebe jedoch erhalten, weil auch das "Nutzsignal" um den gleichen Betrag angehoben wird.
+
*The signal-to-distortion-power ratio ρV2 would, however, remain the same because the "useful signal" would also be increased by the same value.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 22:51, 12 September 2021

Input signal and output signals

A rectangular pulse x(t)  with amplitude 1V  and duration 4ms  is applied to the input of a communication system. Then, the pulse y1(t) , whose signal parameters can be taken from the middle sketch, is measured at the system output.

At the output of another system  S2 , the signal y2(t)  shown in the lower sketch is obtained with the same input signal x(t) .

Let the following definition apply to the error signal used in this task:

ε(t)=y(t)αx(tτ).

The parameters α  and  τ  are to be determined such that the distortion power (the mean squared error) is minimal. For this, the following holds:

PV=¯ε2(t)=1TM(TM)ε2(t)dt

These definitions already take into account that a frequency-independent damping just as a runtime which is constant for all frequencies does not contribute to the distortion.

The integration interval has to be chosen appropriately in each case:

  • Use the interval  0 ... 4ms  for y1(t)  and the interval  1ms ... 5ms for   y2(t) .
  • Thus, the measurement time is TM=4ms in both cases.
  • It is obvious that with respect to y1(t)  the parameters  α=1  and  τ=0  respectively result in the minimum distortion power.


In general, the so-called signal–to–distortion–power ratio is given by the following formula

ρV=α2PxPV.

Here,

  • Px  denotes the power of the signal x(t), and
  • α2Px  denotes the power of y(t)=αx(tτ), that would arise as aresult in the absence of distortion.


Usually, – as also in this task– this S/N-ratio  ρV  is given logarithmically in  dB .




Please note:

Quantitative measure for the signal distortions  and also  
Berücksichtigung von Dämpfung und Laufzeit.


Questions

1

Determine the distortion power of the system  S1.

PV1 = 

 103 V2

2

Compute the signal–to–distortion–power ratio for system  S1.

10lg ρV1 = 

 dB

3

What parameters  α  and  τ  should be used to calculate the distortion power of the system  S2 ?
Justify your result.

α = 

τ = 

 ms

4

Determine the distortion power of the system  S2.

PV2 = 

 103 V2

5

Compute the signal–to–distortion–power ratio for the system  S2.
Interpret the different results.

10lg ρV2 = 

 dB


Solution

Resulting error signals

(1)  The error signal  ε1(t) shown in the graph is obtained with the given parameters α=1  and  τ=0 . The distortion power is thus equal to:

PV1=1ms4ms[(0.1V)2+(0.1V)2]PV1=5103V2_.


(2)  The power of the input signal is:

Px=14ms(1V)24ms=1V2.
  • The following is obtained for the signal–to–distortion–power ratio with the result from  (1) :

ρV1=PxPV1=1V20.005V2=20010lgρV1=23.01dB_.


(3)  The sketch on the information sheet makes it clear that even without the distortions occuring – but due to attenuation and runtime alone – the signal y(t)  would differ significantly from x(t) .

  • The following would arise as a result:  y(t)=0.5x(t1 ms) .
  • If someone does not immediately perceive these values from the graph, then first the error signal
ε2(t)=y2(t)αx(tτ)
and afterwards the mean squared error for very (infinitely) many α–  and  τ–values would have to be determined, in doing so the integration interval is to be adjusted to τ  in each case.
  • Then, the smallest possible result would also be obtained for α=0.5_  and  τ=1 ms_ . However, for this optimization of α  and  τ  the useage of a computer program should be granted.


(4)  The above sketch shows that ε2(t)  is equal to the error signal ε1(t)  except for a shift by 1 ms . Considering the integration interval 1 ms ... 5 ms  the same distortion power is obtained:

PV2=PV1=5103V2_.


(5)  According to the information sheet the following holds:

ρV2=α2PxPV2=0.521V20.005V2=5010lgρV2=16.99dB_.
  • Despite the same distortion power 10lgρV2  is less than  10lgρV1  by about 6 dB .
  • The signal y2(t)  is thus significantly less favourable in terms of SNR than y1(t).
  • It is considered that now the power of the output signal is only a quarter of the input power due to  α=0.5 .
  • If this attenuation at the output was to be compensated by amplifying it by 1/α, the distortion power would indeed increase by α2.
  • The signal-to-distortion-power ratio ρV2 would, however, remain the same because the "useful signal" would also be increased by the same value.