Difference between revisions of "Aufgaben:Exercise 3.1: Probabilities when Rolling Dice"

From LNTwww
 
(24 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID2749__Inf_A_3_1.png|right|Summe zweier Würfel]]
+
[[File:P_ID2749__Inf_A_3_1.png|right|frame|Sum  $S= R + B$  of two dice]]
Wir betrachten das Zufallsexperiment „Würfeln mit ein oder zwei Würfeln”. Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar:
+
We consider the random experiment  »rolling one or two dice«.  Both dice are fair (the six possible outcomes are equally probable) and distinguishable by their colors:
* Die Zufallsgröße $R = \{1, 2, 3, 4, 5, 6 \}$ bezeichnet die Augenzahl des roten Würfels.
+
* The random quantity  $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$  denotes the number of eyes of the red cube.
* Die Zufallsgröße $B = \{1, 2, 3, 4, 5, 6 \}$ bezeichnet die Augenzahl des blauen Würfels.
+
* The random quantity  $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$  denotes the number of eyes of the blue cube.
* Die Zufallsgröße $S =R + B$ steht für die Summe beider Würfel.
+
* The random quantity  $S =R + B$  stands for the sum of both dice.
  
  
In dieser Aufgabe sollen verschiedene Wahrscheinlichkeiten mit Bezug zu den Zufallsgrößen $R$, $B$ und $S$ berechnet werden, wobei das oben angegebene Schema hilfreich sein kann. Dieses beinhaltet die Summe $S$ in Abhängigkeit von $R$ und $B$.
+
In this exercise different probabilities are to be computed with reference to the random variables&nbsp; $R$,&nbsp; $B$&nbsp; and&nbsp; $S$,&nbsp; <br>whereby the scheme indicated above can be helpful.&nbsp; This includes the sum&nbsp; $S$&nbsp; as a function of&nbsp; $R$&nbsp; and&nbsp; $B$.
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 
*Wiederholt wird hier insbesondere der Lehrstoff des Kapitels  [[Stochastische_Signaltheorie/Einige_grundlegende_Definitionen|Wahrscheinlichkeitsrechnung]] im Buch &bdquo;Stochastische_Signaltheorie&rdquo;.
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Some preliminary remarks on 2D random variables]].
 +
*In particular, the subject matter of the chapter&nbsp;  [[Theory_of_Stochastic_Signals/Einige_grundlegende_Definitionen|Probability Calculation]]&nbsp; in the book "Theory of Stochastic Signals"&nbsp; is repeated here.
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die folgenden Wahrscheinlichkeiten an:
+
{Give the following probabilities:
 
|type="{}"}
 
|type="{}"}
$Pr(R = 6)$ = { 0.1667 3% }
+
$\text{Pr}(R = 6)\ = \ $ { 0.1667 3% }
$Pr(B ≤ 2)$ = { 0.3333 3% }
+
$\text{Pr}(B ≤ 2)\ = \ $ { 0.3333 3% }
$Pr(R = B)$ = { 0.1667 3% }
+
$\text{Pr}(R = B)\ = \ $ { 0.1667 3% }
  
  
{Wie lauten die folgenden Wahrscheinlichkeiten?
+
{What are the following probabilities?
 
|type="{}"}
 
|type="{}"}
$Pr(S = 6)$ = { 0.0556 3% }
+
$\text{Pr}(S = 3)\ = \ $ { 0.0556 3% }
$Pr(S = 7)$ = { 0.1667 3% }
+
$\text{Pr}(S = 7)\ = \ $ { 0.1667 3% }
Pr(S ist ungeradzahlig) = { 0.5 3% }
+
$\text{Pr(odd sum)}\ = \ $  { 0.5 3% }
  
  
{Geben Sie die folgenden Wahrscheinlichkeiten an:
+
{State the following probabilities:
 
|type="{}"}
 
|type="{}"}
$Pr[(R = 6)\ \cup \ (B =6)]$ = { 0.3056 3% }
+
$\text{Pr}\big [(R = 6)\ \cup \ (B =6)\big]\ = \ $ { 0.3056 3% }
$Pr[(R = 6)\ \cap \ (B =6)]$ = { 0.0278 3% }
+
$\text{Pr}\big[(R = 6)\ \cap \ (B =6)\big]\ = \ $ { 0.0278 3% }
  
  
{Wie groß ist die Wahrscheinlichkeit, dass beim <i>L</i>&ndash;ten Doppelwurf zum ersten Mal eine &bdquo;6&rdquo; dabei ist?
+
{What is the probability that the first&nbsp; "6"&nbsp; will be on the&nbsp; $L$&ndash;th double roll?
 
|type="{}"}
 
|type="{}"}
Pr(erste „6” beim 1. WUrf) = { 0.3056 3% } $(L=1)$
+
$L = 1\text{:}\hspace{0.5cm}\text{Pr(first „6”)} \ = \ $ { 0.3056 3% }  
Pr(erste „6” beim 2. WUrf) = { 0.2122 3% } $(L=2)$
+
$L = 2\text{:}\hspace{0.5cm}\text{Pr(first „6”)} \ = \ $ { 0.2122 3% }  
Pr(erste „6” beim 3. WUrf) = { 0.1474 3% } $(L=3)$
+
$L = 3\text{:}\hspace{0.5cm}\text{Pr(first „6”)} \ = \ $ { 0.1474 3% }  
  
  
{Wie groß ist die Wahrscheinlichkeit &bdquo;Um die erste &bdquo;6&rdquo; zu erhalten, benötigt man eine geradzahlige Anzahl an Doppelwürfen&rdquo;? Mit der Nomenklatur gemäß (d):
+
{What is the probability of the event&nbsp; &raquo;You need an even number of double rolls, to get the first "6"&laquo;&nbsp; ? <br>Using the nomenclature given in subtask&nbsp; '''(4)''':
 
|type="{}"}
 
|type="{}"}
Pr(L ist geradzahlig) = { 0.4098 3% }
+
$\text{Pr(}L\text{ is even | first „6”)}\ = \ $ { 0.4098 3% }
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
<b>1.</b>&nbsp;&nbsp;Setzt man faire Würfel voraus, so ergibt sich für die Wahrscheinlichkeit, dass
+
'''(1)'''&nbsp; Assuming fair dice, the probability that
 
+
a&nbsp; "6"&nbsp; is rolled with the red die:
:* mit dem roten Würfel eine &bdquo;6&rdquo; geworfen wird:
 
 
:$$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$
 
:$$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$
:* mit dem blauen Würfel eine &bdquo;1&rdquo; oder eine &bdquo;2&rdquo; geworfen wird:
+
* that a&nbsp; "1"&nbsp; or a&nbsp; "2"&nbsp; is rolled with the blue die:
 
:$$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$
 
:$$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$
:* beide Würfel die gleiche Augenzahl anzeigen:
+
* that both dice show the same number of points:
 
:$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$
 
:$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$
  
Letzteres basiert auf der 2D&ndash;Darstellung auf dem Augenblatt sowie auf der Klassischen Definition der Wahrscheinlichkeit entsprechend <i>K</i>/<i>M</i>, wobei <i>K</i> = 6 der insgesamt <i>M</i> = 36 gleichwahrscheinlichen Elementarereignisse &bdquo;<i>R</i> &#8745; <i>B</i>&rdquo; dem hieraus abgeleiteten Ereignis &bdquo;<i>R</i> = <i>B</i>&rdquo; zugeordnet werden können, die auf der Diagonalen liegen. Würfelspieler sprechen in diesem Fall von einem Pasch.
+
The latter is based on the 2D representation on the specification sheet and on the "Classical Definition of Probability" corresponding to&nbsp; $K/M$:
 +
*$K = 6$&nbsp; of the total&nbsp; $M = 36$&nbsp; equally probable elementary events&nbsp; $R \cap B$&nbsp; can be assigned to the event&nbsp; $R=B$&nbsp; derived from this.
 +
*These lie on the diagonal.&nbsp; Dice players speak in this case of a&nbsp; "double".
  
<b>2.</b>&nbsp;&nbsp;Die Lösung basiert wieder auf  der Klassischen Definition der Wahrscheinlichkeit:
 
  
:* In <i>K</i> = 2 der <i>M</i> = 36 Elementarfelder steht eine &bdquo;3&rdquo;: <u>Pr(<i>S</i> = 3) = 2/36</u> = 0.0556.
 
  
:* In <i>K</i> = 6 der <i>M</i> = 36 Elementarfelder  steht eine &bdquo;7&rdquo;: <u>Pr(<i>S</i> = 7) = 6/36</u> = 0.1667.
+
'''(2)'''&nbsp; The solution is again based on the Classical Definition of Probability:
 +
* In&nbsp; $K = 2$&nbsp; of the&nbsp; $M = 36$&nbsp; elementary fields there is a&nbsp; "3" &nbsp; &#8658; &nbsp; ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$
 +
* In&nbsp; $K = 6$&nbsp; of the&nbsp; $M = 36$&nbsp; elementary fields there is a&nbsp; "7"&nbsp; &#8658; &nbsp; ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$
 +
* In&nbsp; $K = 18$&nbsp; of the&nbsp; $M = 36$&nbsp; fields there is an odd number &nbsp; &#8658; &nbsp; ${\rm Pr}(S\text{ is odd}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$
  
:* In <i>K</i> = 18 der <i>M</i> = 36 Felder steht eine ungerade Zahl &#8658; <u>Pr(<i>S</i> ist ungerade) = 18/36</u></u> = 0.5.
 
  
Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten:
+
*This last result could be obtained in another way:
:$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) =$$
+
:$${\rm Pr}(S\hspace{0.15cm}{\rm is \hspace{0.15cm} odd}) =
:$$= {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap
+
{\rm Pr}\big [(R\hspace{0.12cm}{\rm is \hspace{0.15cm} odd}) \cap
(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \big  ] +
+
(B\hspace{0.12cm}{\rm is\hspace{0.12cm} even}) \big  ] +
{\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap
+
{\rm Pr}\big [(R\hspace{0.12cm}{\rm is\hspace{0.12cm} even}) \cap
(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big  ]\hspace{0.05cm}. $$
+
(B\hspace{0.12cm}{\rm is\hspace{0.12cm} odd})\big  ]\hspace{0.05cm}. $$
Mit Pr(<i>R</i> gerade) = Pr(<i>R</i> ungerade) = Pr(<i>B</i> gerade) = Pr(<i>B</i> ungerade) = 1/2 folgt daraus ebenfalls:
+
*With&nbsp; ${\rm Pr}(R\hspace{0.12cm}{\rm is\hspace{0.12cm} even}) = {\rm Pr} (R\hspace{0.12cm}{\rm is\hspace{0.12cm} odd}) = {\rm Pr}(B\hspace{0.12cm}{\rm is\hspace{0.12cm} even})= {\rm Pr}(B\hspace{0.12cm}{\rm is\hspace{0.12cm} odd})   = 1/2$&nbsp; it also follows:
:$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot  1/2 +  1/2 \cdot  1/2 = 1/2 \hspace{0.05cm}.$$
+
:$${\rm Pr}(S\hspace{0.15cm}{\rm is \hspace{0.15cm} odd}) = 1/2 \cdot  1/2 +  1/2 \cdot  1/2 = 1/2 \hspace{0.05cm}.$$
  
<b>3.</b>&nbsp;&nbsp;Die Wahrscheinlichkeit für das Ereignis, dass mindestens einer der beiden Würfel eine &bdquo;6&rdquo; zeigt, ist:
+
 
 +
 
 +
'''(3)'''&nbsp; The probability for the event that at least one of the two dice shows a&nbsp; "6" is:
 
:$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056}
 
:$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Die zweite Wahrscheinlichkeit steht für den &bdquo;Sechser&ndash;Pasch&rdquo;:
+
*The second probability stands alone for the&nbsp; "double sixes":
 
:$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278}
 
:$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
<b>4.</b>&nbsp;&nbsp;Das Ergebnis für <i>L</i> = 1 wurde bereits in der Teilaufgabe (3) ermittelt:
+
 
 +
 
 +
'''(4)'''&nbsp; The result for&nbsp; $L = 1$&nbsp; has already been determined in subtask&nbsp; '''(3)'''&nbsp;:
 
:$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ]  = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
 
:$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ]  = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
Die Wahrscheinlichkeit <i>p</i><sub>2</sub> lässt sich mit <i>p</i><sub>1</sub> wie folgt ausdrücken:
+
*The probability&nbsp; $p_2$&nbsp; can be expressed with&nbsp; $p_1$&nbsp; as follows:
 
:$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$
 
:$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$
In anderen Worten: Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine &bdquo;6&rdquo; geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine &bdquo;6&rdquo; geworfen wurde &#8658; Wahrscheinlichkeit (1&nbsp;&ndash;&nbsp;<i>p</i><sub>1</sub>), aber im zweiten Wurf mindestens eine &bdquo;6&rdquo; dabei ist &nbsp;&#8658;&nbsp; Wahrscheinlichkeit <i>p</i><sub>1</sub>. Entsprechend gilt für die Wahrscheinlichkeit &bdquo;erste 6 im dritten Wurf&rdquo;:
+
:In words, the probability that a&nbsp; "6"&nbsp; is rolled for the first time in the second roll is equal to the probability that no&nbsp; "6"&nbsp; was rolled in the first roll &nbsp; &#8658; &nbsp; probability&nbsp; $1-p_1$, but there is at least one&nbsp; "6"&nbsp; in the second roll &nbsp; &#8658; &nbsp; probability&nbsp; $p_1$.
 +
 
 +
*Correspondingly, for the probability "first 6 in the third throw":
 
:$$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$
 
:$$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$
  
<b>5.</b>&nbsp;&nbsp;Durch Erweiterung der Musterlösung zur Teilaufgabe (d) erhält man:
+
 
:$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})
+
 
\hspace{0.15cm} = \hspace{0.15cm} p_2 + p_4 + p_6 + ... = \\
+
'''(5)'''&nbsp; By extending the sample solution to subtask&nbsp; '''(4)'''&nbsp;, we obtain:
\hspace{0.15cm}(1 - p_1) \cdot p_1 + (1 - p_1)^3 \cdot p_1 + (1 - p_1)^5 \cdot p_1 + ...
+
:$$\text{Pr(}L\text{ is even | first „6”)}\ =
= \\
+
p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4  \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} =  
\hspace{0.15cm}(1 - p_1) \cdot p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + ... \hspace{0.15cm} \right ]
+
(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...}
 +
= (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ]
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses:
+
*Accordingly, we obtain for the probability of the complementary event:
:$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig})
+
:$${\rm Pr}(L\text{ is odd | first „6”)}  
\hspace{0.15cm}  = \hspace{0.15cm} p_1 + p_3 + p_5 + ... = \\
+
= p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ]
=  \hspace{0.15cm} p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + ... \hspace{0.15cm} \right ]
+
\hspace{0.05cm}\hspace{0.3cm}
\hspace{0.05cm}$$
+
\Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\text{ is odd | first „6”)}) } {{\rm Pr}(L\text{ is even | first „6”)})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$
:$$\Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$
+
 
Weiter muss gelten:
+
*Further, must hold::
:$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})   +  
+
:$${\rm Pr}(L \text{ is even | first „6”)}  +  
{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungeradzahlig}) = 1$$
+
{\rm Pr}(L \text{ is odd | first „6”)}  = 1$$
:$$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})   \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1  $$
+
:$$\Rightarrow \hspace{0.3cm} {\rm Pr}(L \text{ is even | first „6”)}  \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm is\hspace{0.15cm} even})  = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} =  \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$
:$$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} geradzahlig})  = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} =  \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^3.1 Vorbemerkungen zu 2D-Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises|^3.1 General Information on 2D Random Variables^]]

Latest revision as of 09:08, 24 September 2021

Sum  $S= R + B$  of two dice

We consider the random experiment  »rolling one or two dice«.  Both dice are fair (the six possible outcomes are equally probable) and distinguishable by their colors:

  • The random quantity  $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$  denotes the number of eyes of the red cube.
  • The random quantity  $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$  denotes the number of eyes of the blue cube.
  • The random quantity  $S =R + B$  stands for the sum of both dice.


In this exercise different probabilities are to be computed with reference to the random variables  $R$,  $B$  and  $S$, 
whereby the scheme indicated above can be helpful.  This includes the sum  $S$  as a function of  $R$  and  $B$.





Hints:



Questions

1

Give the following probabilities:

$\text{Pr}(R = 6)\ = \ $

$\text{Pr}(B ≤ 2)\ = \ $

$\text{Pr}(R = B)\ = \ $

2

What are the following probabilities?

$\text{Pr}(S = 3)\ = \ $

$\text{Pr}(S = 7)\ = \ $

$\text{Pr(odd sum)}\ = \ $

3

State the following probabilities:

$\text{Pr}\big [(R = 6)\ \cup \ (B =6)\big]\ = \ $

$\text{Pr}\big[(R = 6)\ \cap \ (B =6)\big]\ = \ $

4

What is the probability that the first  "6"  will be on the  $L$–th double roll?

$L = 1\text{:}\hspace{0.5cm}\text{Pr(first „6”)} \ = \ $

$L = 2\text{:}\hspace{0.5cm}\text{Pr(first „6”)} \ = \ $

$L = 3\text{:}\hspace{0.5cm}\text{Pr(first „6”)} \ = \ $

5

What is the probability of the event  »You need an even number of double rolls, to get the first "6"«  ?
Using the nomenclature given in subtask  (4):

$\text{Pr(}L\text{ is even | first „6”)}\ = \ $


Solution

(1)  Assuming fair dice, the probability that a  "6"  is rolled with the red die:

$$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$
  • that a  "1"  or a  "2"  is rolled with the blue die:
$$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$
  • that both dice show the same number of points:
$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$

The latter is based on the 2D representation on the specification sheet and on the "Classical Definition of Probability" corresponding to  $K/M$:

  • $K = 6$  of the total  $M = 36$  equally probable elementary events  $R \cap B$  can be assigned to the event  $R=B$  derived from this.
  • These lie on the diagonal.  Dice players speak in this case of a  "double".


(2)  The solution is again based on the Classical Definition of Probability:

  • In  $K = 2$  of the  $M = 36$  elementary fields there is a  "3"   ⇒   ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$
  • In  $K = 6$  of the  $M = 36$  elementary fields there is a  "7"  ⇒   ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$
  • In  $K = 18$  of the  $M = 36$  fields there is an odd number   ⇒   ${\rm Pr}(S\text{ is odd}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$


  • This last result could be obtained in another way:
$${\rm Pr}(S\hspace{0.15cm}{\rm is \hspace{0.15cm} odd}) = {\rm Pr}\big [(R\hspace{0.12cm}{\rm is \hspace{0.15cm} odd}) \cap (B\hspace{0.12cm}{\rm is\hspace{0.12cm} even}) \big ] + {\rm Pr}\big [(R\hspace{0.12cm}{\rm is\hspace{0.12cm} even}) \cap (B\hspace{0.12cm}{\rm is\hspace{0.12cm} odd})\big ]\hspace{0.05cm}. $$
  • With  ${\rm Pr}(R\hspace{0.12cm}{\rm is\hspace{0.12cm} even}) = {\rm Pr} (R\hspace{0.12cm}{\rm is\hspace{0.12cm} odd}) = {\rm Pr}(B\hspace{0.12cm}{\rm is\hspace{0.12cm} even})= {\rm Pr}(B\hspace{0.12cm}{\rm is\hspace{0.12cm} odd}) = 1/2$  it also follows:
$${\rm Pr}(S\hspace{0.15cm}{\rm is \hspace{0.15cm} odd}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$


(3)  The probability for the event that at least one of the two dice shows a  "6" is:

$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
  • The second probability stands alone for the  "double sixes":
$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} \hspace{0.05cm}.$$


(4)  The result for  $L = 1$  has already been determined in subtask  (3) :

$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
  • The probability  $p_2$  can be expressed with  $p_1$  as follows:
$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$
In words, the probability that a  "6"  is rolled for the first time in the second roll is equal to the probability that no  "6"  was rolled in the first roll   ⇒   probability  $1-p_1$, but there is at least one  "6"  in the second roll   ⇒   probability  $p_1$.
  • Correspondingly, for the probability "first 6 in the third throw":
$$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$


(5)  By extending the sample solution to subtask  (4) , we obtain:

$$\text{Pr(}L\text{ is even | first „6”)}\ = p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] \hspace{0.05cm}. $$
  • Accordingly, we obtain for the probability of the complementary event:
$${\rm Pr}(L\text{ is odd | first „6”)} = p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\text{ is odd | first „6”)}) } {{\rm Pr}(L\text{ is even | first „6”)})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$
  • Further, must hold::
$${\rm Pr}(L \text{ is even | first „6”)} + {\rm Pr}(L \text{ is odd | first „6”)} = 1$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}(L \text{ is even | first „6”)} \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm is\hspace{0.15cm} even}) = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} = \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$