Difference between revisions of "Aufgaben:Exercise 3.1Z: Drawing Cards"

From LNTwww
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID77__Sto_A_1_5.gif|right|frame|Das gewünschte Ergebnis <br>&bdquo;Drei Asse werden gezogen&rdquo;]]
+
[[File:P_ID77__Sto_A_1_5.gif|right|frame|The desired result <br>&raquo;Three aces are drawn&laquo;]]
Aus einem Kartenspiel mit&nbsp; $32$&nbsp; Karten, darunter vier Asse, werden nacheinander drei Karten herausgezogen.&nbsp; Für Frage&nbsp; '''(1)'''&nbsp; wird vorausgesetzt, dass nach dem Ziehen einer Karte
+
From a deck of&nbsp; $32$&nbsp; cards, including four aces, three cards are drawn in succession.&nbsp; For question&nbsp; '''(1)''',&nbsp; it is assumed that after a card has been drawn
*diese in den Stapel zurückgelegt wird,  
+
*it is put back into the deck,
*dieser neu gemischt wird und
+
*the deck is reshuffled and
*anschließend die nächste Karte gezogen wird.
+
*then the next card is drawn.
  
  
Dagegen sollen Sie für die weiteren Teilfragen ab&nbsp; '''(2)'''&nbsp; davon ausgehen, dass die drei Karten auf einmal gezogen werden&nbsp; („Ziehen ohne Zurücklegen“).
+
In contrast, for the other sub-questions from&nbsp; '''(2)'''&nbsp; onwards, you should assume that the three cards are drawn all at once&nbsp; <br>("card draw without putting back").
  
*Im Folgenden bezeichnen wir mit&nbsp; $A_i$&nbsp; das Ereignis, dass die zum Zeitpunkt&nbsp; $i$&nbsp; gezogene Karte ein Ass ist.&nbsp; <br>Hierbei ist&nbsp; $i = 1,\ 2,\ 3$&nbsp; zu setzen.  
+
*In the following, we use&nbsp; $A_i$&nbsp; to denote the event that the card drawn at time&nbsp; $i$&nbsp; is an ace. &nbsp; <br>Here we have to set&nbsp; $i = 1,\ 2,\ 3$&nbsp;.  
*Das Komplementärereignis sagt dann aus, dass zum Zeitpunkt&nbsp; $i$&nbsp; kein Ass gezogen wird, sondern irgend eine andere Karte.
+
*The complementary event&nbsp; $\overline{\it A_i}$&nbsp; then states that at time&nbsp; $i$&nbsp; no ace is drawn, but any other card.
  
  
Line 20: Line 20:
  
  
 
+
Hints:
 
+
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Some preliminary remarks on 2D random variables]].
 
+
*In particular, the subject matter of the chapter&nbsp;  [[Theory_of_Stochastic_Signals/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistical Dependence and Independence]] in the book "Stochastic Signal Theory" is repeated here.
 
+
*A summary of the theoretical basics with examples can be found in the (German language) learning video&nbsp;<br> &nbsp; &nbsp; &nbsp; [[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit ]]&nbsp; &rArr; &nbsp;  "Statistical Dependence and Independence".  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 
*Wiederholt wird hier insbesondere der Lehrstoff des Kapitels&nbsp;  [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]] im Buch &bdquo;Stochastische Signaltheorie&rdquo;.
 
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo &nbsp;[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]].  
 
 
   
 
   
  
Line 33: Line 29:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
  
Betrachten Sie zunächst den Fall „Ziehen mit Zurücklegen“.&nbsp; Wie groß ist die Wahrscheinlichkeit&nbsp; $p_1$, dass drei Asse gezogen werden?
+
First, consider the case of&nbsp; "card draw with putting back".&nbsp; What is the probability&nbsp; $p_1$, that three aces will be drawn?
 
|type="{}"}
 
|type="{}"}
 
  $p_1 \ = \ $  { 0.002 3%  }
 
  $p_1 \ = \ $  { 0.002 3%  }
  
{Mit welcher Wahrscheinlichkeit&nbsp; $p_2$&nbsp; werden drei Asse gezogen, wenn man die Karten nicht zurücklegt?&nbsp; Warum ist&nbsp; $p_2$&nbsp; kleiner/gleich/größer als&nbsp; $p_1$?
+
{What is the probability&nbsp; $p_2$&nbsp; that three aces will be drawn if the cards are not put back?&nbsp; Why is&nbsp; $p_2$&nbsp; smaller/equal/larger than&nbsp; $p_1$?
 
|type="{}"}
 
|type="{}"}
 
$p_2 \ = \ $ { 0.0008 3% }
 
$p_2 \ = \ $ { 0.0008 3% }
  
{Betrachten Sie weiterhin den Fall „Ziehen ohne Zurücklegen“.&nbsp; Wie  groß ist die Wahrscheinlichkeit&nbsp; $p_3$ , dass kein einziges Ass gezogen  wird?
+
{Consider further the case of&nbsp; "card draw without putting back".&nbsp; What is the probability&nbsp; $p_3$ that not a single ace is drawn?
 
|type="{}"}
 
|type="{}"}
 
$p_3 \ = \ $ { 0.6605 3% }
 
$p_3 \ = \ $ { 0.6605 3% }
  
{Wie groß ist die Wahrscheinlichkeit&nbsp; $p_4$, dass im Fall „Ziehen ohne Zurücklegen“ genau ein Ass gezogen wird?
+
{What is the probability&nbsp; $p_4$ that exactly one ace is drawn in the case&nbsp; "card draw without putting back"?
 
|type="{}"}
 
|type="{}"}
 
$p_4 \ = \ $ { 0.3048 3% }  
 
$p_4 \ = \ $ { 0.3048 3% }  
  
{Wie groß ist die Wahrscheinlichkeit, dass zwei der drei gezogenen Karten Asse sind? <br>Hinweis: &nbsp; Die Ereignisse „genau&nbsp; $i$&nbsp; Asse werden gezogen” mit&nbsp;  $i = 0,\ 1,\ 2,\ 3$&nbsp; beschreiben ein so genanntes&nbsp; &bdquo;vollständiges System&rdquo;.
+
{What is the probability that two of the three drawn cards are aces? <br>Note: &nbsp; The events „exactly&nbsp; $i$&nbsp; aces are drawn” with&nbsp;  $i = 0,\ 1,\ 2,\ 3$&nbsp; describe a so-called&nbsp; "complete system".
 
|type="{}"}
 
|type="{}"}
 
$p_5 \ = \ $ { 0.0339 3% }
 
$p_5 \ = \ $ { 0.0339 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Werden die Karten nach dem Ziehen zurückgelegt, so ist zu jedem Zeitpunkt die Wahrscheinlichkeit für ein Ass gleich groß&nbsp; $(1/8)$:
+
'''(1)'''&nbsp; If the cards are put back after being drawn, the probability of an ace is the same at every time&nbsp; $(1/8)$:
 
    
 
    
:$$ p_{\rm 1} = \rm Pr (3 \hspace{0.1cm} Asse) = \rm Pr (\it A_{\rm 1} \rm )\cdot \rm Pr (\it A_{\rm 2} \rm )\cdot \rm Pr (\it A_{\rm 3} \rm ) = \rm \big({1}/{8}\big)^3 \hspace{0.15cm}\underline{\approx 0.002}.$$
+
:$$ p_{\rm 1} = \rm Pr (3 \hspace{0.1cm} aces) = \rm Pr (\it A_{\rm 1} \rm )\cdot \rm Pr (\it A_{\rm 2} \rm )\cdot \rm Pr (\it A_{\rm 3} \rm ) = \rm \big({1}/{8}\big)^3 \hspace{0.15cm}\underline{\approx 0.002}.$$
  
 
   
 
   
 
   
 
   
'''(2)'''&nbsp; Nun erhält man mit dem allgemeinen Multiplikationstheorem:
+
'''(2)'''&nbsp; Now, using the general multiplication theorem, we obtain:
  
 
:$$ p_{\rm 2} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} \rm ) = \rm Pr (\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} \rm )).$$
 
:$$ p_{\rm 2} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} \rm ) = \rm Pr (\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} \rm )).$$
*Die bedingten Wahrscheinlichkeiten k&ouml;nnen nach der klassischen Definition berechnet werden.  
+
*The conditional probabilities can be calculated according to the classical definition.
*Man erhält somit das Ergebnis&nbsp; $k/m$&nbsp; $($bei&nbsp; $m$&nbsp; Karten sind noch&nbsp; $k$&nbsp; Asse enthalten$)$:
+
*One thus obtains the result&nbsp; $k/m$&nbsp; $($with&nbsp; $m$&nbsp; cards there are still&nbsp; $k$&nbsp; aces$)$:
 
:$$p_{\rm 2} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30}\hspace{0.15cm}\underline{ \approx 0.0008}.$$
 
:$$p_{\rm 2} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30}\hspace{0.15cm}\underline{ \approx 0.0008}.$$
  
*$p_2$&nbsp; ist kleiner als&nbsp; $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.
+
*$p_2$&nbsp; is smaller than&nbsp; $p_1$, because now the second and third aces are less likely than before.
  
  
  
'''(3)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(2)'''&nbsp; erhält man hier:
+
'''(3)'''&nbsp; Analogous to sub-task&nbsp; '''(2)''',&nbsp; we obtain here:
  
 
:$$p_{\rm 3} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline{\approx 0.6605}.$$
 
:$$p_{\rm 3} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline{\approx 0.6605}.$$
Line 84: Line 80:
  
  
'''(4)'''&nbsp; Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdrücken. &nbsp; &rArr; &nbsp; $p_{\rm 4} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) $.
+
'''(4)'''&nbsp; This probability can be expressed as the sum of three probabilities  &nbsp; &rArr; &nbsp; $p_{\rm 4} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) $.
* Die zugehörigen Ereignisse&nbsp; ${\rm Pr}(D_1)$,&nbsp;  ${\rm Pr}(D_2)$&nbsp; und&nbsp; ${\rm Pr}(D_3)$&nbsp; sind disjunkt:
+
* The corresponding events&nbsp; $D_1$,&nbsp;  $D_2$&nbsp; and&nbsp; $D_3$&nbsp; are disjoint:
  
:$$\rm Pr (\it D_{\rm 1}) = \rm Pr (\it A_{\rm 1} \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
+
:$${\rm Pr} (D_1) = {\rm Pr} (A_1 \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
:$$\rm Pr (\it D_{\rm 2}) =  \rm Pr ( \overline{\it A_{\rm 1}} \cap \it A_{\rm 2} \cap \overline{\it A_{\rm 3}})  = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot\frac{27}{30}=\rm 0.1016,$$
+
:$${\rm Pr} (D_2) =  {\rm Pr} ( \overline{A_1} \cap A_2 \cap \overline{A_3})  = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot\frac{27}{30}=\rm 0.1016,$$
:$$\rm Pr (\it D_{\rm 3}) =  \rm Pr ( \overline{\it A_{\rm 1}} \cap  \overline{\it A_{\rm 2}} \cap \it A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
+
:$${\rm Pr} (D_3) =  {\rm Pr} ( \overline{A_1} \cap  \overline{A_2} \cap A_3) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
  
*Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein?  
+
*These probabilities are all the same - why should it be any different?
*Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht.
+
*If you draw exactly one ace from three cards, it is just as likely whether you draw this as the first, second or third card.
*Damit erhält man für die Summe:  
+
*This gives us for the sum:
  
:$$p_{\rm 4}= \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) \rm \hspace{0.15cm}\underline{= 0.3084}.$$
+
:$$p_{\rm 4}= {\rm Pr} (D_1 \cup D_2 \cup D_3) \rm \hspace{0.15cm}\underline{= 0.3084}.$$
  
  
'''(5)'''&nbsp; Definiert man die Ereignisse&nbsp; $E_i =$&nbsp; &bdquo;Es werden genau&nbsp; $i$&nbsp; Asse gezogen&rdquo; mit den Indizes&nbsp; $i = 0,\ 1,\ 2,\ 3$,  
+
'''(5)'''&nbsp; If one defines the events&nbsp; $E_i =$&nbsp; &raquo;Exactly&nbsp; $i$&nbsp; aces are drawn&laquo;&nbsp; with the indices&nbsp; $i = 0,\ 1,\ 2,\ 3$,  
*so beschreiben&nbsp; $E_0$,&nbsp; $E_1$,&nbsp; $E_2$&nbsp; und $E_3$&nbsp; ein vollständiges System.  
+
*then&nbsp; $E_0$,&nbsp; $E_1$,&nbsp; $E_2$&nbsp; and $E_3$&nbsp; describe a&nbsp; "complete system".
*Deshalb gilt:
+
*Therefore:
:$$p_{\rm 5} = \rm Pr (\it E_{\rm 2}) = \rm 1 - \it p_{\rm 2} -\it p_{\rm 3} - \it p_{\rm 4} \hspace{0.15cm}\underline{= \rm 0.0339}.$$
+
:$$p_{\rm 5} = {\rm Pr} (E_2) = 1 - p_{\rm 2} - p_{\rm 3} - p_{\rm 4} \hspace{0.15cm}\underline{= \rm 0.0339}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 107: Line 103:
  
  
[[Category:Aufgaben zu Informationstheorie|^3.1 Allgemeines zu 2D-Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises|^3.1 General Information on 2D Random Variables^]]

Latest revision as of 09:09, 24 September 2021

The desired result
»Three aces are drawn«

From a deck of  $32$  cards, including four aces, three cards are drawn in succession.  For question  (1),  it is assumed that after a card has been drawn

  • it is put back into the deck,
  • the deck is reshuffled and
  • then the next card is drawn.


In contrast, for the other sub-questions from  (2)  onwards, you should assume that the three cards are drawn all at once 
("card draw without putting back").

  • In the following, we use  $A_i$  to denote the event that the card drawn at time  $i$  is an ace.  
    Here we have to set  $i = 1,\ 2,\ 3$ .
  • The complementary event  $\overline{\it A_i}$  then states that at time  $i$  no ace is drawn, but any other card.




Hints:



Questions

1

First, consider the case of  "card draw with putting back".  What is the probability  $p_1$, that three aces will be drawn?

$p_1 \ = \ $

2

What is the probability  $p_2$  that three aces will be drawn if the cards are not put back?  Why is  $p_2$  smaller/equal/larger than  $p_1$?

$p_2 \ = \ $

3

Consider further the case of  "card draw without putting back".  What is the probability  $p_3$ that not a single ace is drawn?

$p_3 \ = \ $

4

What is the probability  $p_4$ that exactly one ace is drawn in the case  "card draw without putting back"?

$p_4 \ = \ $

5

What is the probability that two of the three drawn cards are aces?
Note:   The events „exactly  $i$  aces are drawn” with  $i = 0,\ 1,\ 2,\ 3$  describe a so-called  "complete system".

$p_5 \ = \ $


Solution

(1)  If the cards are put back after being drawn, the probability of an ace is the same at every time  $(1/8)$:

$$ p_{\rm 1} = \rm Pr (3 \hspace{0.1cm} aces) = \rm Pr (\it A_{\rm 1} \rm )\cdot \rm Pr (\it A_{\rm 2} \rm )\cdot \rm Pr (\it A_{\rm 3} \rm ) = \rm \big({1}/{8}\big)^3 \hspace{0.15cm}\underline{\approx 0.002}.$$


(2)  Now, using the general multiplication theorem, we obtain:

$$ p_{\rm 2} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} \rm ) = \rm Pr (\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1}\rm ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} \rm )).$$
  • The conditional probabilities can be calculated according to the classical definition.
  • One thus obtains the result  $k/m$  $($with  $m$  cards there are still  $k$  aces$)$:
$$p_{\rm 2} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30}\hspace{0.15cm}\underline{ \approx 0.0008}.$$
  • $p_2$  is smaller than  $p_1$, because now the second and third aces are less likely than before.


(3)  Analogous to sub-task  (2),  we obtain here:

$$p_{\rm 3} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline{\approx 0.6605}.$$


(4)  This probability can be expressed as the sum of three probabilities   ⇒   $p_{\rm 4} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) $.

  • The corresponding events  $D_1$,  $D_2$  and  $D_3$  are disjoint:
$${\rm Pr} (D_1) = {\rm Pr} (A_1 \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_2) = {\rm Pr} ( \overline{A_1} \cap A_2 \cap \overline{A_3}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot\frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_3) = {\rm Pr} ( \overline{A_1} \cap \overline{A_2} \cap A_3) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
  • These probabilities are all the same - why should it be any different?
  • If you draw exactly one ace from three cards, it is just as likely whether you draw this as the first, second or third card.
  • This gives us for the sum:
$$p_{\rm 4}= {\rm Pr} (D_1 \cup D_2 \cup D_3) \rm \hspace{0.15cm}\underline{= 0.3084}.$$


(5)  If one defines the events  $E_i =$  »Exactly  $i$  aces are drawn«  with the indices  $i = 0,\ 1,\ 2,\ 3$,

  • then  $E_0$,  $E_1$,  $E_2$  and $E_3$  describe a  "complete system".
  • Therefore:
$$p_{\rm 5} = {\rm Pr} (E_2) = 1 - p_{\rm 2} - p_{\rm 3} - p_{\rm 4} \hspace{0.15cm}\underline{= \rm 0.0339}.$$