Difference between revisions of "Aufgaben:Exercise 3.2Z: Two-dimensional Probability Mass Function"
(19 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables |
}} | }} | ||
− | [[File:P_ID2752__Inf_Z_3_2_neu.png|right| | + | [[File:P_ID2752__Inf_Z_3_2_neu.png|right|frame|PMF of the two-dimensional random variable XY]] |
− | + | We consider the random variables $X = \{ 0,\ 1,\ 2,\ 3 \}$ and $Y = \{ 0,\ 1,\ 2 \}$, whose joint probability mass function $P_{XY}(X,\ Y)$ is given. | |
− | * | + | *From this two-dimensional probability mass function (PMF), the one-dimensional probability mass functions PX(X) and PY(Y) are to be determined. |
− | * | + | *Such a one-dimensional probability mass function is sometimes also called "marginal probability". |
− | |||
− | + | If PXY(X, Y)=PX(X)⋅PY(Y), the two random variables X and Y are statistically independent. Otherwise, there are statistical dependencies between them. | |
+ | |||
+ | In the second part of the task we consider the random variables $U= \big \{ 0,\ 1 \big \}$ and $V= \big \{ 0,\ 1 \big \}$, which result from X and Y by modulo-2 operations: | ||
:U=Xmod2,V=Ymod2. | :U=Xmod2,V=Ymod2. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | === | + | |
+ | |||
+ | |||
+ | |||
+ | <u>Hints:</u> | ||
+ | *The exercise belongs to the chapter [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Some preliminary remarks on two-dimensional random variables]]. | ||
+ | *The same constellation is assumed here as in [[Aufgaben:Aufgabe_3.2:_Erwartungswertberechnungen|Exercise 3.2]]. | ||
+ | *There the random variables $Y = \{ 0,\ 1,\ 2,\ 3 \} were considered, but with the addition {\rm Pr}(Y = 3) = 0$. | ||
+ | *The property |X|=|Y| forced in this way was advantageous in the previous task for the formal calculation of the expected value. | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the probability mass function PX(X)? |
|type="{}"} | |type="{}"} | ||
PX(0) = { 0.5 3% } | PX(0) = { 0.5 3% } | ||
PX(1) = { 0.125 3% } | PX(1) = { 0.125 3% } | ||
− | PX(2) = { 0 | + | PX(2) = { 0. } |
PX(3) = { 0.375 3% } | PX(3) = { 0.375 3% } | ||
− | { | + | {What is the probability mass function PY(Y)? |
|type="{}"} | |type="{}"} | ||
PY(0) = { 0.5 3% } | PY(0) = { 0.5 3% } | ||
Line 40: | Line 47: | ||
PY(2) = { 0.25 3% } | PY(2) = { 0.25 3% } | ||
− | { | + | {Are the random variables X and Y statistically independent? |
− | |||
− | |||
− | |||
+ | |type="()"} | ||
+ | - Yes, | ||
+ | + No. | ||
− | { | + | |
+ | {Determine the probabilities $P_{UV}( U,\ V)$. | ||
|type="{}"} | |type="{}"} | ||
− | PUV(U=0,V=0) = { 0.375 3% } | + | $P_{UV}( U = 0,\ V = 0) \ = \ $ { 0.375 3% } |
− | PUV(U=0,V=1) = { 0.375 | + | $P_{UV}( U = 0,\ V = 1) \ = \ $ { 0.375 3% } |
− | PUV(U=1,V=0) = { 0.125 3% } | + | $P_{UV}( U = 1,\ V = 0) \ = \ $ { 0.125 3% } |
− | PUV(U=1,V=1) = { 0.125 3% } | + | $P_{UV}( U =1,\ V = 1) \ = \ $ { 0.125 3% } |
− | { | + | {Are the random variables U and V statistically independent? |
− | |type=" | + | |type="()"} |
− | + | + | + Yes, |
− | - | + | - No. |
Line 62: | Line 70: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' You get from $P_{XY}(X,\ Y)$ to the one-dimensional probability mass function PX(X) by summing up all Y probabilities: |
− | + | :$$P_X(X = x_{\mu}) = \sum_{y \hspace{0.05cm} \in \hspace{0.05cm} Y} \hspace{0.1cm} P_{XY}(x_{\mu}, y).$$ | |
− | PX(X=xμ)=∑y∈YPXY(xμ,y) | + | *One thus obtains the following numerical values: |
− | + | :$$P_X(X = 0) = 1/4+1/8+1/8 = 1/2 \hspace{0.15cm}\underline{= 0.500},$$ | |
− | + | :$$P_X(X = 1)= 0+0+1/8 = 1/8 \hspace{0.15cm}\underline{= 0.125},$$ | |
− | $$ | + | :$$P_X(X = 2) = 0+0+0 \hspace{0.15cm}\underline{= 0}$$ |
− | + | :$$P_X(X = 3) = 1/4+1/8+0=3/8 \hspace{0.15cm}\underline{= 0.375}\hspace{0.5cm} \Rightarrow \hspace{0.5cm} P_X(X) = \big [ 1/2, \ 1/8 , \ 0 , \ 3/8 \big ].$$ | |
− | PX(X=1)=0+0+1/8=1/8=0.125 | ||
− | |||
− | PX(X=2)=0+0+0=0 | ||
− | |||
− | |||
− | '''2 | + | '''(2)''' Analogous to sub-task '''(1)''' , the following now holds: |
+ | :PY(Y=yκ)=∑x∈XPXY(x,yκ) | ||
+ | :PY(Y=0)=1/4+0+0+1/4=1/2=0.500_, | ||
+ | :$$P_Y(Y = 1) = 1/8+0+0+1/8 = 1/4 \hspace{0.15cm}\underline{= 0.250},$$ | ||
+ | :PY(Y=2)=1/8+1/8+0+0=1/4=0.250_⇒PY(Y=0)=[1/2, 1/4, 1/4]. | ||
− | |||
− | |||
− | $P_Y(Y | + | '''(3)''' With statistical independence, $P_{XY}(X,Y)= P_X(X) \cdot P_Y(Y)$ should be. |
+ | *This does not apply here: answer <u>'''NO'''</u>. | ||
− | |||
− | |||
− | ''' | + | '''(4)''' Starting from the left-hand table ⇒ $P_{XY}(X,Y), we arrive at the middle table ⇒ P_{UY}(U,Y)$, <br>by combining certain probabilities according to $U = X \hspace{0.1cm}\text{mod} \hspace{0.1cm} 2$. |
− | + | If one also takes into account $V = Y \hspace{0.1cm}\text{mod} \hspace{0.1cm} 2$, one obtains the probabilities sought according to the right-hand table: | |
+ | [[File:P_ID2753__Inf_Z_3_2d_neu.png|right|frame|Different probability functions]] | ||
− | PUV(U=0,V=0)=PUV(U=0,V=1)=3/8=0.375 | + | :$$P_{UV}( U = 0, V = 0) = 3/8 \hspace{0.15cm}\underline{= 0.375},$$ |
+ | :$$P_{UV}( U = 0, V = 1) = 3/8 \hspace{0.15cm}\underline{= 0.375},$$ | ||
+ | :PUV(U=1,V=0)=1/8=0.125_, | ||
+ | :$$P_{UV}( U = 1, V = 1) = 1/8 \hspace{0.15cm}\underline{= 0.125}.$$ | ||
− | |||
− | |||
− | '''5 | + | '''(5)''' The correct answer is <u>'''YES'''</u>: |
+ | *The corresponding one-dimensional probability mass functions are: | ||
+ | :PU(U)=[1/2, 1/2], | ||
+ | :PV(V)=[3/4, 1/4]. | ||
+ | *Thus: PUV(U,V)=PU(U)⋅PV(V) ⇒ U and V are statistically independent. | ||
− | |||
− | |||
− | |||
Line 118: | Line 125: | ||
− | [[Category: | + | [[Category:Information Theory: Exercises|^3.1 General Information on 2D Random Variables^]] |
Latest revision as of 10:12, 24 September 2021
We consider the random variables X={0, 1, 2, 3} and Y={0, 1, 2}, whose joint probability mass function PXY(X, Y) is given.
- From this two-dimensional probability mass function (PMF), the one-dimensional probability mass functions PX(X) and PY(Y) are to be determined.
- Such a one-dimensional probability mass function is sometimes also called "marginal probability".
If PXY(X, Y)=PX(X)⋅PY(Y), the two random variables X and Y are statistically independent. Otherwise, there are statistical dependencies between them.
In the second part of the task we consider the random variables U={0, 1} and V={0, 1}, which result from X and Y by modulo-2 operations:
- U=Xmod2,V=Ymod2.
Hints:
- The exercise belongs to the chapter Some preliminary remarks on two-dimensional random variables.
- The same constellation is assumed here as in Exercise 3.2.
- There the random variables Y={0, 1, 2, 3} were considered, but with the addition Pr(Y=3)=0.
- The property |X|=|Y| forced in this way was advantageous in the previous task for the formal calculation of the expected value.
Questions
Solution
- PX(X=xμ)=∑y∈YPXY(xμ,y).
- One thus obtains the following numerical values:
- PX(X=0)=1/4+1/8+1/8=1/2=0.500_,
- PX(X=1)=0+0+1/8=1/8=0.125_,
- PX(X=2)=0+0+0=0_
- PX(X=3)=1/4+1/8+0=3/8=0.375_⇒PX(X)=[1/2, 1/8, 0, 3/8].
(2) Analogous to sub-task (1) , the following now holds:
- PY(Y=yκ)=∑x∈XPXY(x,yκ)
- PY(Y=0)=1/4+0+0+1/4=1/2=0.500_,
- PY(Y=1)=1/8+0+0+1/8=1/4=0.250_,
- PY(Y=2)=1/8+1/8+0+0=1/4=0.250_⇒PY(Y=0)=[1/2, 1/4, 1/4].
(3) With statistical independence, PXY(X,Y)=PX(X)⋅PY(Y) should be.
- This does not apply here: answer NO.
(4) Starting from the left-hand table ⇒ PXY(X,Y), we arrive at the middle table ⇒ PUY(U,Y),
by combining certain probabilities according to U=Xmod2.
If one also takes into account V=Ymod2, one obtains the probabilities sought according to the right-hand table:
- PUV(U=0,V=0)=3/8=0.375_,
- PUV(U=0,V=1)=3/8=0.375_,
- PUV(U=1,V=0)=1/8=0.125_,
- PUV(U=1,V=1)=1/8=0.125_.
(5) The correct answer is YES:
- The corresponding one-dimensional probability mass functions are:
- PU(U)=[1/2, 1/2],
- PV(V)=[3/4, 1/4].
- Thus: PUV(U,V)=PU(U)⋅PV(V) ⇒ U and V are statistically independent.