Difference between revisions of "Aufgaben:Exercise 3.7: Some Entropy Calculations"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/Verschiedene Entropien zweidimensionaler Zufallsgrößen }} [[File:|right|]] ===Fragebogen=== <quiz display=s…“)
 
 
(35 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Verschiedene Entropien zweidimensionaler Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Different_Entropy_Measures_of_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID2766__Inf_A_3_6.png|right|frame|Diagram: Entropies and information]]
 +
We consider the two random variables&nbsp; $XY$&nbsp; and&nbsp; $UV$&nbsp; with the following two-dimensional probability mass functions:
 +
:$$P_{XY}(X, Y) = \begin{pmatrix} 0.18 & 0.16\\ 0.02 & 0.64 \end{pmatrix}\hspace{0.05cm} \hspace{0.05cm}$$
 +
:$$P_{UV}(U, V) \hspace{0.05cm}= \begin{pmatrix} 0.068 & 0.132\\ 0.272 & 0.528 \end{pmatrix}\hspace{0.05cm}$$
  
 +
For the random variable&nbsp; $XY$&nbsp; the following are to be calculated in this exercise:
 +
* the joint entropy:
 +
:$$H(XY) = -{\rm E}\big [\log_2  P_{ XY }( X,Y) \big ],$$
 +
* the two individual entropies:
 +
:$$H(X) = -{\rm E}\big [\log_2  P_X( X)\big ],$$
 +
:$$H(Y) = -{\rm E}\big [\log_2  P_Y( Y)\big ].$$
 +
From this, the following descriptive variables can also be determined very easily according to the above scheme – shown for the random variable&nbsp; $XY$:
 +
* the conditional entropies:
 +
:$$H(X \hspace{0.05cm}|\hspace{0.05cm} Y) = -{\rm E}\big [\log_2  P_{ X \hspace{0.05cm}|\hspace{0.05cm}Y }( X \hspace{0.05cm}|\hspace{0.05cm} Y)\big ],$$
 +
:$$H(Y \hspace{0.05cm}|\hspace{0.05cm} X) = -{\rm E}\big [\log_2  P_{ Y \hspace{0.05cm}|\hspace{0.05cm} X }( Y \hspace{0.05cm}|\hspace{0.05cm} X)\big ],$$
 +
* the mutual information between $X$ and $Y$:
 +
:$$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)}
 +
{P_{X}(X) \cdot P_{Y}(Y) }\right ]  \hspace{0.05cm}.$$
  
===Fragebogen===
+
Finally, verify qualitative statements regarding the second random variable&nbsp; $UV$&nbsp;.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Different_Entropy_Measures_of_Two-Dimensional_Random_Variables|Different entropy measures of two-dimensional random variables]].
 +
*In particular, reference is made to the pages&nbsp; <br> &nbsp; &nbsp; [[Information_Theory/Different_Entropy_Measures_of_Two-Dimensional_Random_Variables#Conditional_probability_and_conditional_entropy|Conditional probability and conditional entropy]] &nbsp; as well as <br> &nbsp; &nbsp; [[Information_Theory/Different_Entropy_Measures_of_Two-Dimensional_Random_Variables#Mutual_information_between_two_random_variables|Mutual information between two random variables]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Calculate the joint entropy.
|type="[]"}
+
|type="{}"}
- Falsch
+
$H(XY) \ = \ $  { 1.393 3% } $\ \rm bit$
+ Richtig
+
 
 +
{What are the entropies of the one-dimensional random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp;?
 +
|type="{}"}
 +
$H(X) \ = \ $ { 0.722 3% } $\ \rm bit$
 +
$H(Y) \ = \ $ { 0.925 3% } $\ \rm bit$
  
 +
{How large is the mutual information between the random variables&nbsp; $X$&nbsp; and&nbsp; $Y$?
 +
|type="{}"}
 +
$I(X; Y) \ = \ $ { 0.254 3% } $\ \rm bit$
  
{Input-Box Frage
+
{Calculate the two conditional entropies.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$H(X|Y) \ = \ $ { 0.468 3% } $\ \rm bit$
 +
$H(Y|X) \ = \ $ { 0.671 3% } $\ \rm bit$
 +
 
  
 +
{Which of the following statements are true for the two-dimensional random variable $UV$?
 +
|type="[]"}
 +
+ The one-dimensional random variables&nbsp; $U$&nbsp; and&nbsp; $V$&nbsp; are statistically independent.
 +
+ The mutual information of&nbsp; $U$&nbsp; and&nbsp; $V$&nbsp;  is&nbsp;  $I(U; V) = 0$.
 +
- For the compound entropy&nbsp; $H(UV) = H(XY)$ holds.
 +
+ The relations&nbsp; $H(U|V) = H(U)$&nbsp; and&nbsp; $H(V|U) = H(V)$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
 
'''2.'''
+
'''(1)'''&nbsp; From the given composite probability we obtain
'''3.'''
+
 
'''4.'''
+
:$$H(XY) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.18} + 0.16\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.16}+
'''5.'''
+
0.02\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.02}+
'''6.'''
+
0.64\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.64}
'''7.'''
+
\hspace{0.15cm} \underline {= 1.393\,{\rm (bit)}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The one-dimensional probability functions are&nbsp; $P_X(X) = \big [0.2, \ 0.8 \big ]$&nbsp; and&nbsp; $P_Y(Y) = \big [0.34, \ 0.66 \big ]$.&nbsp; From this follows:
 +
:$$H(X)  = 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} + 0.8\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.8}\hspace{0.15cm} \underline {= 0.722\,{\rm (bit)}} \hspace{0.05cm},$$
 +
:$$H(Y) =0.34 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.34} + 0.66\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.66}\hspace{0.15cm} \underline {= 0.925\,{\rm (bit)}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; From the graph on the information page you can see the relationship:
 +
:$$I(X;Y) = H(X) + H(Y) - H(XY) = 0.722\,{\rm (bit)} + 0.925\,{\rm (bit)}- 1.393\,{\rm (bit)}\hspace{0.15cm} \underline {= 0.254\,{\rm (bit)}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Similarly, according to the graph on the information page:
 +
:$$H(X \hspace{-0.1cm}\mid \hspace{-0.08cm} Y)  = H(XY) - H(Y) = 1.393- 0.925\hspace{0.15cm} \underline {= 0.468\,{\rm (bit)}} \hspace{0.05cm},$$
 +
:$$H(Y \hspace{-0.1cm}\mid \hspace{-0.08cm} X)  = H(XY) - H(X) = 1.393- 0.722\hspace{0.15cm} \underline {= 0.671\,{\rm (bit)}} \hspace{0.05cm}$$
 +
 
 +
[[File:P_ID2767__Inf_A_3_6d.png|right|frame|Entropy values for the random variables $XY$ and $UV$]]
 +
 
 +
*The  left diagram summarises the results of subtasks&nbsp; '''(1)''', ... , &nbsp;'''(4)'''&nbsp; true to scale.
 +
*The joint entropy is highlighted in grey and the mutual information in yellow.
 +
*A red background refers to the random variable&nbsp; $X$,&nbsp; and a green one to&nbsp; $Y$.&nbsp; Hatched fields indicate a  conditional entropy.
 +
 
 +
 
 +
The right graph describes the same situation for the random variable&nbsp; $UV$ &nbsp; &rArr; &nbsp; subtask&nbsp; '''(5)'''.
 +
 
 +
 
 +
'''(5)'''&nbsp; According to the diagram on the right, <br>statements 1, 2 and 4 are correct:
 +
*One recognises the validity of&nbsp; $P_{ UV } = P_U  · P_V$  &nbsp; &rArr; &nbsp;  mutual information $I(U; V) = 0$&nbsp; by the fact that the second row of the&nbsp; $P_{ UV }$ matrix differs from the first row only by a constant factor&nbsp; $(4)$&nbsp;.
 +
*This results in the same one-dimensional probability mass functions as for the random variable&nbsp; $XY$ &nbsp; &rArr; &nbsp;  $P_U(U) = \big [0.2, \ 0.8 \big ]$ &nbsp;and&nbsp;  $P_V(V) = \big [0.34, \ 0.66 \big ]$.
 +
*Therefore&nbsp; $H(U) = H(X) = 0.722\ \rm  bit$ &nbsp;and&nbsp; $H(V) = H(Y) = 0.925 \ \rm bit$.
 +
*Here, however, the following now applies for the joint entropy: &nbsp; $H(UV) = H(U) + H(V) ≠ H(XY)$.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^3.2Verschiedene Entropien zweidimensionaler Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises|^3.2 Entropies of 2D Random Variables^]]

Latest revision as of 09:15, 24 September 2021

Diagram: Entropies and information

We consider the two random variables  $XY$  and  $UV$  with the following two-dimensional probability mass functions:

$$P_{XY}(X, Y) = \begin{pmatrix} 0.18 & 0.16\\ 0.02 & 0.64 \end{pmatrix}\hspace{0.05cm} \hspace{0.05cm}$$
$$P_{UV}(U, V) \hspace{0.05cm}= \begin{pmatrix} 0.068 & 0.132\\ 0.272 & 0.528 \end{pmatrix}\hspace{0.05cm}$$

For the random variable  $XY$  the following are to be calculated in this exercise:

  • the joint entropy:
$$H(XY) = -{\rm E}\big [\log_2 P_{ XY }( X,Y) \big ],$$
  • the two individual entropies:
$$H(X) = -{\rm E}\big [\log_2 P_X( X)\big ],$$
$$H(Y) = -{\rm E}\big [\log_2 P_Y( Y)\big ].$$

From this, the following descriptive variables can also be determined very easily according to the above scheme – shown for the random variable  $XY$:

  • the conditional entropies:
$$H(X \hspace{0.05cm}|\hspace{0.05cm} Y) = -{\rm E}\big [\log_2 P_{ X \hspace{0.05cm}|\hspace{0.05cm}Y }( X \hspace{0.05cm}|\hspace{0.05cm} Y)\big ],$$
$$H(Y \hspace{0.05cm}|\hspace{0.05cm} X) = -{\rm E}\big [\log_2 P_{ Y \hspace{0.05cm}|\hspace{0.05cm} X }( Y \hspace{0.05cm}|\hspace{0.05cm} X)\big ],$$
  • the mutual information between $X$ and $Y$:
$$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \cdot P_{Y}(Y) }\right ] \hspace{0.05cm}.$$

Finally, verify qualitative statements regarding the second random variable  $UV$ .




Hints:


Questions

1

Calculate the joint entropy.

$H(XY) \ = \ $

$\ \rm bit$

2

What are the entropies of the one-dimensional random variables  $X$  and  $Y$ ?

$H(X) \ = \ $

$\ \rm bit$
$H(Y) \ = \ $

$\ \rm bit$

3

How large is the mutual information between the random variables  $X$  and  $Y$?

$I(X; Y) \ = \ $

$\ \rm bit$

4

Calculate the two conditional entropies.

$H(X|Y) \ = \ $

$\ \rm bit$
$H(Y|X) \ = \ $

$\ \rm bit$

5

Which of the following statements are true for the two-dimensional random variable $UV$?

The one-dimensional random variables  $U$  and  $V$  are statistically independent.
The mutual information of  $U$  and  $V$  is  $I(U; V) = 0$.
For the compound entropy  $H(UV) = H(XY)$ holds.
The relations  $H(U|V) = H(U)$  and  $H(V|U) = H(V)$.


Solution

(1)  From the given composite probability we obtain

$$H(XY) = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.18} + 0.16\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.16}+ 0.02\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.02}+ 0.64\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.64} \hspace{0.15cm} \underline {= 1.393\,{\rm (bit)}} \hspace{0.05cm}.$$


(2)  The one-dimensional probability functions are  $P_X(X) = \big [0.2, \ 0.8 \big ]$  and  $P_Y(Y) = \big [0.34, \ 0.66 \big ]$.  From this follows:

$$H(X) = 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} + 0.8\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.8}\hspace{0.15cm} \underline {= 0.722\,{\rm (bit)}} \hspace{0.05cm},$$
$$H(Y) =0.34 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.34} + 0.66\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.66}\hspace{0.15cm} \underline {= 0.925\,{\rm (bit)}} \hspace{0.05cm}.$$


(3)  From the graph on the information page you can see the relationship:

$$I(X;Y) = H(X) + H(Y) - H(XY) = 0.722\,{\rm (bit)} + 0.925\,{\rm (bit)}- 1.393\,{\rm (bit)}\hspace{0.15cm} \underline {= 0.254\,{\rm (bit)}} \hspace{0.05cm}.$$


(4)  Similarly, according to the graph on the information page:

$$H(X \hspace{-0.1cm}\mid \hspace{-0.08cm} Y) = H(XY) - H(Y) = 1.393- 0.925\hspace{0.15cm} \underline {= 0.468\,{\rm (bit)}} \hspace{0.05cm},$$
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.08cm} X) = H(XY) - H(X) = 1.393- 0.722\hspace{0.15cm} \underline {= 0.671\,{\rm (bit)}} \hspace{0.05cm}$$
Entropy values for the random variables $XY$ and $UV$
  • The left diagram summarises the results of subtasks  (1), ... ,  (4)  true to scale.
  • The joint entropy is highlighted in grey and the mutual information in yellow.
  • A red background refers to the random variable  $X$,  and a green one to  $Y$.  Hatched fields indicate a conditional entropy.


The right graph describes the same situation for the random variable  $UV$   ⇒   subtask  (5).


(5)  According to the diagram on the right,
statements 1, 2 and 4 are correct:

  • One recognises the validity of  $P_{ UV } = P_U · P_V$   ⇒   mutual information $I(U; V) = 0$  by the fact that the second row of the  $P_{ UV }$ matrix differs from the first row only by a constant factor  $(4)$ .
  • This results in the same one-dimensional probability mass functions as for the random variable  $XY$   ⇒   $P_U(U) = \big [0.2, \ 0.8 \big ]$  and  $P_V(V) = \big [0.34, \ 0.66 \big ]$.
  • Therefore  $H(U) = H(X) = 0.722\ \rm bit$  and  $H(V) = H(Y) = 0.925 \ \rm bit$.
  • Here, however, the following now applies for the joint entropy:   $H(UV) = H(U) + H(V) ≠ H(XY)$.