Difference between revisions of "Aufgaben:Exercise 3.11: Erasure Channel"
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
(16 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Information_Theory/Application_to_Digital_Signal_Transmission |
}} | }} | ||
− | [[File:P_ID2791__Inf_A_3_10.png|right| | + | [[File:P_ID2791__Inf_A_3_10.png|right|frame|Erasure channel with <br>four inputs and five outputs]] |
− | + | An erasure channel is considered with | |
− | * | + | * the $M$ inputs $x ∈ X = \{1,\ 2, \ \text{...} \ ,\ M\}$, and |
− | * | + | * the $M + 1$ outputs $y ∈ Y = \{1,\ 2,\ \ \text{...} \ ,\ M,\ \text{E}\}.$ |
− | + | The graph shows the model for the special case $M = 4$. The sink symbol $y = \text{E}$ takes into account an erasure for the case that the receiver cannot make a sufficiently certain decision. | |
− | + | The transition probabilities are given for $1 ≤ μ ≤ M$ as follows: | |
:$${\rm Pr}(Y \hspace{-0.05cm} = \mu\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = 1-\lambda \hspace{0.05cm},$$ | :$${\rm Pr}(Y \hspace{-0.05cm} = \mu\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = 1-\lambda \hspace{0.05cm},$$ | ||
:$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$ | :$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$ | ||
− | + | We are looking for: | |
− | * | + | * the capacity $C_{M\rm –EC}$ of this M–ary Erasure Channel, |
− | * | + | * the capacity $C_{\rm BEC}$ of the [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channels]] as a special case of the above model. |
− | + | ||
− | * | + | |
− | * | + | |
− | * | + | |
+ | |||
+ | |||
+ | |||
+ | Hints: | ||
+ | *The exercise belongs to the chapter [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung|Application to Digital Signal Transmission]]. | ||
+ | *Reference is made in particular to the page [[Information_Theory/Anwendung_auf_die_Digitalsignalübertragung#Information-theoretical_model_of_digital_signal_transmission|Information-theoretical model of digital signal transmission]]. | ||
+ | *In the above diagram, "erasures" $($with probability $λ)$ are drawn in blue. | ||
+ | * "Correct transmission paths" $($i.e., from $X = μ$ to $Y = μ)$ are shown in red ($1 ≤ μ ≤ M$). | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | { What $P_X(X)$ should be generally applied for the channel capacity calculation? |
|type="[]"} | |type="[]"} | ||
− | - $P_X(X) = (0.5, 0.5),$ | + | - $P_X(X) = (0.5, \ 0.5),$ |
− | + $P_X(X) = (1/M, 1/M, \text{...} , 1/M),$ | + | + $P_X(X) = (1/M,\ 1/M, \ \text{...} \ ,\ 1/M),$ |
− | - $P_X(X) = (0.1, 0.2, 0.3, 0.4).$ | + | - $P_X(X) = (0.1,\ 0.2,\ 0.3,\ 0.4).$ |
− | { | + | {How many probabilities $p_{μκ} = {\rm Pr}\big[(X = μ) ∩ (Y = κ)\big]$ are nonzero? |
− | |type=" | + | |type="()"} |
− | - | + | - Exactly $M · (M + 1)$, |
− | - | + | - Exactly $M$, |
− | + | + | + Exactly $2 · M$. |
− | { | + | {What is the sink entropy in general and for $M = 4$ and $λ = 0.2$? |
|type="{}"} | |type="{}"} | ||
$H(Y) \ = \ $ { 2.322 3% } $\ \rm bit$ | $H(Y) \ = \ $ { 2.322 3% } $\ \rm bit$ | ||
− | { | + | {Calculate the irrelevance. What is the value for $M = 4$ and $λ = 0.2$? |
|type="{}"} | |type="{}"} | ||
$H(Y|X) \ = \ $ { 0.722 3% } $\ \rm bit$ | $H(Y|X) \ = \ $ { 0.722 3% } $\ \rm bit$ | ||
− | { | + | {What is the channel capacity $C$ as a function of $M$? |
|type="{}"} | |type="{}"} | ||
− | $M = 4\text{:} \ | + | $M = 4\text{:} \hspace{0.5cm} C\ = \ $ { 1.6 3% } $\ \rm bit$ |
− | $M = 2\text{:} \ | + | $M = 2\text{:} \hspace{0.5cm} C\ = \ $ { 0.8 3% } $\ \rm bit$ |
− | { | + | {What is the channel capacity of the BEC channel in compact form? |
− | |type=" | + | |type="()"} |
− | + $C_{\rm BEC} = 1 | + | + $C_{\rm BEC} = 1 - λ,$ |
− | - $C_{\rm BEC} = 1 | + | - $C_{\rm BEC} = 1 - H_{\rm bin}(λ).$ |
Line 66: | Line 74: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Correct is the <u>proposed solution 2:</u> |
− | * | + | * Due to the symmetry of the transition probabilities $P_{Y|X}(Y|X)$ it is obvious that a uniform distribution will lead to the maximum mutual information $I(X; Y)$ and therefore to the channel capacity $C$ : |
− | :$$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0. | + | :$$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}.$$ |
− | * | + | *In the special case $M = 2$ also $P_X(X) = (0.5, \ 0.5)$ would be correct. |
− | |||
− | |||
− | '''(3)''' | + | '''(2)''' Correct is the <u>proposed solution 3</u>, i.e. exactly $2M$ connections. Because: |
− | :$${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}$$ | + | *From each source symbol $X = μ$ one gets to the sink symbol $Y = μ$ as well as to the erasure $Y = \text{E}$. |
− | + | ||
− | :$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}$$ | + | |
− | + | ||
+ | '''(3)''' All probabilities ${\rm Pr}(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}{\rm Pr}(Y = M)$ are equal. Thus, for $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$ we obtain: | ||
+ | :$${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}.$$ | ||
+ | *Moreover, from each source symbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ one also gets to the erasure $Y = \text{E}$: | ||
+ | :$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}.$$ | ||
+ | *Inspection reveals that the sum of all $M + 1$ sink symbol probabilities actually adds up t $1$ . | ||
+ | *It follows for the sink entropy: | ||
:$$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$ | :$$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$ | ||
− | + | *Summarized with the binary entropy function, this gives: | |
:$$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$ | :$$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$ | ||
− | + | :and with $M = 4$ as well as $ λ = 0.2$: | |
− | :$$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}$$ | + | :$$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$ |
+ | |||
+ | |||
+ | |||
+ | '''(4)''' The $2M$ joint probabilities | ||
+ | :$${\rm Pr} \big[(X = μ) ∩ (Y = κ)\big] ≠ 0$$ | ||
+ | :and the conditional probabilities | ||
+ | :$$pκ|μ = {\rm Pr}(Y = κ|X = μ)$$ | ||
+ | :show the following properties: | ||
+ | # The combination $p_{μκ} = (1 – λ)/M$ and $p_{κ|μ} = 1 – λ$ occurs $M$ times. | ||
+ | # The combination $p_{μκ} = λ/M$ and $p_{κ|μ} = λ$ also occurs $M$ times. | ||
+ | |||
+ | It follows that: | ||
+ | :$$ H(Y \hspace{-0.15cm}\mid \hspace{-0.15cm} X) \hspace{-0.01cm} =\hspace{-0.01cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$ | ||
+ | *The result is independent of $M$. With $λ = 0.2$ we obtain: | ||
+ | :$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''(5)''' | + | '''(5)''' The channel capacity $C$ is equal to the maximum mutual information $I(X; Y)$, where the maximization with respect to $P_X(X)$ has already been considered by the symmetric approach: |
:$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$ | :$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$ | ||
− | $$\Rightarrow \hspace{0.3cm} M = 4: \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} | + | :$$\Rightarrow \hspace{0.3cm} M = 4\text{:} \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} |
− | M | + | M = 2\text{:} \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$ |
+ | |||
− | '''(6)''' | + | '''(6)''' The "Binary Erasure Channel" $\rm (BEC)$ is a special case of the general model considered here with $M = 2$: |
− | :$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}$$ | + | :$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}.$$ |
− | + | *Thus, the correct <u>solution proposal 1</u>. | |
+ | *The second proposed solution, on the other hand, applies to the "Binary Symmetric Channel" $\rm (BSC)$ with distortion probability $λ$. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 112: | Line 134: | ||
− | [[Category: | + | [[Category:Information Theory: Exercises|^3.3 Application to Digital Signal Transmission^]] |
Latest revision as of 12:56, 24 September 2021
An erasure channel is considered with
- the $M$ inputs $x ∈ X = \{1,\ 2, \ \text{...} \ ,\ M\}$, and
- the $M + 1$ outputs $y ∈ Y = \{1,\ 2,\ \ \text{...} \ ,\ M,\ \text{E}\}.$
The graph shows the model for the special case $M = 4$. The sink symbol $y = \text{E}$ takes into account an erasure for the case that the receiver cannot make a sufficiently certain decision.
The transition probabilities are given for $1 ≤ μ ≤ M$ as follows:
- $${\rm Pr}(Y \hspace{-0.05cm} = \mu\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = 1-\lambda \hspace{0.05cm},$$
- $${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$
We are looking for:
- the capacity $C_{M\rm –EC}$ of this M–ary Erasure Channel,
- the capacity $C_{\rm BEC}$ of the Binary Erasure Channels as a special case of the above model.
Hints:
- The exercise belongs to the chapter Application to Digital Signal Transmission.
- Reference is made in particular to the page Information-theoretical model of digital signal transmission.
- In the above diagram, "erasures" $($with probability $λ)$ are drawn in blue.
- "Correct transmission paths" $($i.e., from $X = μ$ to $Y = μ)$ are shown in red ($1 ≤ μ ≤ M$).
Questions
Solution
- Due to the symmetry of the transition probabilities $P_{Y|X}(Y|X)$ it is obvious that a uniform distribution will lead to the maximum mutual information $I(X; Y)$ and therefore to the channel capacity $C$ :
- $$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}.$$
- In the special case $M = 2$ also $P_X(X) = (0.5, \ 0.5)$ would be correct.
(2) Correct is the proposed solution 3, i.e. exactly $2M$ connections. Because:
- From each source symbol $X = μ$ one gets to the sink symbol $Y = μ$ as well as to the erasure $Y = \text{E}$.
(3) All probabilities ${\rm Pr}(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}{\rm Pr}(Y = M)$ are equal. Thus, for $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$ we obtain:
- $${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}.$$
- Moreover, from each source symbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ one also gets to the erasure $Y = \text{E}$:
- $${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}.$$
- Inspection reveals that the sum of all $M + 1$ sink symbol probabilities actually adds up t $1$ .
- It follows for the sink entropy:
- $$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$
- Summarized with the binary entropy function, this gives:
- $$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$
- and with $M = 4$ as well as $ λ = 0.2$:
- $$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$
(4) The $2M$ joint probabilities
- $${\rm Pr} \big[(X = μ) ∩ (Y = κ)\big] ≠ 0$$
- and the conditional probabilities
- $$pκ|μ = {\rm Pr}(Y = κ|X = μ)$$
- show the following properties:
- The combination $p_{μκ} = (1 – λ)/M$ and $p_{κ|μ} = 1 – λ$ occurs $M$ times.
- The combination $p_{μκ} = λ/M$ and $p_{κ|μ} = λ$ also occurs $M$ times.
It follows that:
- $$ H(Y \hspace{-0.15cm}\mid \hspace{-0.15cm} X) \hspace{-0.01cm} =\hspace{-0.01cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$
- The result is independent of $M$. With $λ = 0.2$ we obtain:
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$
(5) The channel capacity $C$ is equal to the maximum mutual information $I(X; Y)$, where the maximization with respect to $P_X(X)$ has already been considered by the symmetric approach:
- $$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$
- $$\Rightarrow \hspace{0.3cm} M = 4\text{:} \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} M = 2\text{:} \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$
(6) The "Binary Erasure Channel" $\rm (BEC)$ is a special case of the general model considered here with $M = 2$:
- $$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}.$$
- Thus, the correct solution proposal 1.
- The second proposed solution, on the other hand, applies to the "Binary Symmetric Channel" $\rm (BSC)$ with distortion probability $λ$.