Difference between revisions of "Aufgaben:Exercise 1.8: Variable Edge Steepness"

From LNTwww
 
(59 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Systembeschreibung im Frequenzbereich}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID867__LZI_A_1_8.png|right|Trapeztiefpass und Cosinus–Rolloff–Tiefpass (Aufgabe A1.8)]] Zwei Tiefpässe mit variabler Flankensteilheit sollen miteinander verglichen werden. Für Frequenzen $|f| ≤ f_1$ gilt in beiden Fällen $H(f) =$ 1. Dagegen werden alle Frequenzen $|f| ≥ f_2$ vollständig unterdrückt.
+
[[File:EN_LZI_A_1_8.png|right|frame|Trapezoidal low-pass filter (red) and raised-cosine low-pass filter (green)]]  
Im mittleren Bereich $f_1 ≤ |f| ≤ f_2$ sind die Frequenzgänge durch die nachfolgenden Gleichungen festgelegt:
+
Two low-pass filters with variable edge steepnesses are compared with each other. For frequencies $|f| ≤ f_1$ ,  $H(f) = 1$  holds in both cases. In contrast, all frequencies $|f| ≥ f_2$  are suppressed entirely.
*Trapeztiefpass (TTP):
 
$$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
 
*Cosinus–Rolloff–Tiefpass (CRTP):
 
$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$
 
  
 +
In the range $f_1 ≤ |f| ≤ f_2$  the frequency responses are defined by the following equations:
 +
*Trapezoidal low-pass filter  $\rm (TLP)$:
 +
:$$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
 +
*Raised-cosine low-pass filter  $\rm (RCLP)$:
 +
:$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$
  
Alternative Systemparameter sind für beide Tiefpässe die über das flächengleiche Rechteck definierte äquivalente Bandbreite $Δf$ sowie der Rolloff–Faktor (im Frequenzbereich):
+
Alternative system parameters for both low-pass filters are 
$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$
+
*the equivalent bandwidth $Δf$ defined by the equal-area rectangle, and also
In der gesamten Aufgabe gelte $Δf =$ 10 kHz und $r =$ 0.2. Die Impulsantworten lauten mit der äquivalenten Impulsdauer $Δt = 1/Δf =$ 0.1 ms:
+
*the roll-off factor (in frequency domain):
$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot
+
:$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$
 +
 
 +
Throughout the task, $Δf = 10 \ \rm kHz$  and  $r = 0.2$ hold true.  
 +
 
 +
The impulse responses are with the equivalent impulse duration $Δt = 1/Δf = 0.1 \ \rm ms$:
 +
:$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot
 
\frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$
 
\frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$
$$h_{\rm CRTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot
+
:$$h_{\rm CRTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot
 
\frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta
 
\frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta
 
t  )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$
 
t  )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$
  
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Kapitel 1.3]]. Sie können Ihre Ergebnisse mit folgendem Interaktionsmodul überprüfen:
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
''Please note:''
 +
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]]. 
 +
*In particular, reference is made to the pages  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Trapezoidal_low-pass_filter|Trapezoidal low-pass filter]]  and  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Raised-cosine_low-pass_filter|Raised-cosine low-pass filter]].
 +
*You can check your results with the interactive applet  [[Applets:Frequenzgang_und_Impulsantwort|Frequency response and impulse response]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Gleichung für die äquivalente Bandbreite $Δf$?
+
{What is the equation for the equivalent bandwidth&nbsp;$Δf$?&nbsp; It holds that
 
|type="[]"}
 
|type="[]"}
- Es gilt $Δf = f_2 f_1$.
+
- $Δf = f_2 - f_1$,
+ Es gilt $Δf = f_1 + f_2$.
+
+ $Δf = f_1 + f_2$,
- Es gilt $Δf = (f_2 + f_1)/2$.
+
- $Δf = (f_2 + f_1)/2$.
  
  
{Bestimmen Sie die Tiefpass-Parameter $f_1$ und $f_2$ für $Δf =$ 10 kHz und $r =$ 0.2.
+
{Determine the low-pass filter parameters&nbsp;$f_1$&nbsp; and&nbsp;$f_2$&nbsp; for &nbsp;$Δf = 10 \ \rm kHz$&nbsp; and &nbsp;$r = 0.2$.
 
|type="{}"}
 
|type="{}"}
$f_1 =$ { 4 } kHz
+
$f_1 \ = \ $ { 4 3% } $\ \rm kHz$
$f_2 =$ { 6 } kHz
+
$f_2 \ = \ $ { 6 3% } $\ \rm kHz$
  
  
{Welche Aussagen sind für die Impulsantwort des Trapeztiefpasses zutreffend, wenn $r =$ 0.2 vorausgesetzt wird?
+
{Which statements are true for the impulse response of the trapezoidal low-pass filter if &nbsp;$r = 0.2$&nbsp; is assumed?
 
|type="[]"}
 
|type="[]"}
+ $h(t)$ besitzt Nullstellen bei $±n · Δt (n = 1, 2, ...)$.
+
+ $h(t)$&nbsp; has zeros at&nbsp; $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
- $h(t)$ besitzt zusätzliche Nullstellen zu anderen Zeiten.
+
- $h(t)$&nbsp; has additional zeros at other times.
- Mit $r = 0$ würde $h(t)$ schneller abklingen.
+
- $h(t)$&nbsp; would decay faster with &nbsp;$r = 0$&nbsp;.
+ Mit $r = 1$ würde $h(t)$ schneller abklingen.
+
+ $h(t)$&nbsp; would decay faster with &nbsp;$r = 1$&nbsp;.
  
  
{Welche Aussagen treffen für die Impulantwort des Cosinus–Rolloff–Tiefpasses zu, wenn $r =$ 0.2 vorausgesetzt wird?
+
{Which statements are true for the impulse response of the raised-cosine low-pass filter if &nbsp;$r = 0.2$&nbsp; is assumed?
 
|type="[]"}
 
|type="[]"}
+ $h(t)$ besitzt Nullstellen bei $±n · Δt (n = 1, 2, ...)$.
+
+ $h(t)$&nbsp; has zeros at&nbsp; $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
+ $h(t)$ besitzt zusätzliche Nullstellen zu anderen Zeiten.
+
+ $h(t)$&nbsp; has additional zeros at other times.
- Mit $r = 0$ würde $h(t)$ schneller abklingen.
+
- $h(t)$&nbsp; would decay faster with &nbsp;$r = 0$&nbsp;.
+ Mit $r = 1$ würde $h(t)$ schneller abklingen.
+
+ $h(t)$&nbsp; would decay faster with &nbsp;$r = 1$&nbsp;.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Bei beiden Tiefpässen ist das Integral über <i>H</i>(<i>f</i>) gleich <i>f</i><sub>1</sub> + <i>f</i><sub>2</sub>. Wegen <i>H</i>(<i>f</i> = 0) = 1 gilt somit auch der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; <u>Approach 2</u> is correct:
:$$\Delta f = f_1 + f_2.$$
+
*For both low-pass filters, the integral over&nbsp;$H(f)$&nbsp; is equal to&nbsp;$f_1 + f_2$.  
 +
*Thus, due to&nbsp;$H(f = 0 = 1)$&nbsp; <u>Approach 2</u> is correct: &nbsp; $\Delta f = f_1 + f_2.$
 +
 
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Setzt man die unter a) gefundene Beziehung in die Definitionsgleichung des Rolloff&ndash;Faktors ein, so erhält man
+
'''(2)'''&nbsp; Substituting the relation found in&nbsp; '''(1)'''&nbsp; into the defining equation of the roll-off factor the following is obtained:
 
:$${f_2 - f_1}  = r \cdot \Delta f =  {2\,\rm
 
:$${f_2 - f_1}  = r \cdot \Delta f =  {2\,\rm
 
  kHz}, \hspace{0.5cm} {f_2 + f_1}  = {10\,\rm
 
  kHz}, \hspace{0.5cm} {f_2 + f_1}  = {10\,\rm
 
  kHz}.$$
 
  kHz}.$$
  
:Durch Addition bzw. Subtraktion beider Gleichungen ergeben sich die so genannten &bdquo;Eckfrequenzen&rdquo; zu <i>f</i><sub>1</sub> <u>= 4 kHz</u> und <i>f</i><sub>2</sub> <u>= 6 kHz</u>.
+
*By addition or subtraction of both equations the so-called "corner frequencies" result in
 +
:$$f_1 \underline{= 4 \ \rm kHz},$$
 +
:$$f_2 \underline{= 6 \ \rm kHz}.$$
  
:<b>3.</b>&nbsp;&nbsp;Die erste si&ndash;Funktion von <i>h</i><sub>TTP</sub>(<i>t</i>) führt zu Nullstellen im Abstand &Delta;<i>t</i> (siehe auch Gleichung auf der Angabenseite). Die zweite si&ndash;Funktion bewirkt Nullstellen bei Vielfachen von 5 &middot; &Delta;<i>t</i>. Da diese exakt mit den Nullstellen der ersten si&ndash;Funktion zusammenfallen, gibt es keine zusätzlichen Nullstellen.
 
  
:Der Sonderfall <i>r</i> = 0 entspricht dem idealen rechteckförmigen Tiefpass mit si&ndash;förmiger Impulsantwort. Diese klingt extrem langsam ab. Dagegen fällt die si<sup>2</sup>&ndash;förmige Impulsantwort des Dreiecktiefpasses (Sonderfall für <i>r</i> = 1) asymptotisch mit 1/<i>t</i><sup>2</sup> und damit schneller als mit <i>r</i> = 0.2.
+
'''(3)'''&nbsp; <u>Suggestions 1 and 4</u> are correct:
 +
*The first&nbsp;$\rm sinc$&ndash;function of&nbsp;$h_{\rm TTP}(t)$&nbsp; causes zeros at an interval of&nbsp;$\Delta t$&nbsp; (see also the equation on the information page).
 +
*The second &nbsp;$\rm sinc$&ndash;function causes zeros at multiples of&nbsp;$5 &middot; \Delta t$.
 +
*There are no additional zeros since these coincide exactly with the zeros of the first &nbsp;$\rm sinc$&ndash;function.
 +
*The special case&nbsp;$r = 0$&nbsp; corresponds to the ideal rectangular low-pass filter with &nbsp;$\rm sinc$&ndash;shaped impulse response. This decays extremely slowly.  
 +
*The &nbsp;$\rm si^2$&ndash;shaped impulse response of the triangular low-pass filter&nbsp; $($special case for&nbsp;$r = 1)$&nbsp; decays asymptotically with &nbsp;$1/t^2$, i.e. faster than with&nbsp;$r = 0.2$.
  
:Richtig sind somit die <u>Lösungsvorschläge 1 und 4</u>.
 
  
:<b>4.</b>&nbsp;&nbsp;<i>h</i><sub>CRTP</sub>(<i>t</i>) weist aufgrund der si&ndash;Funktion ebenfalls Nullstellen im Abstand &Delta;<i>t</i> auf. Die Cosinusfunktion hat Nullstellen zu folgenden Zeitpunkten:
+
'''(4)'''&nbsp; <u>Suggestions 1, 2 and 4</u> are correct here:
 +
*The impulse response&nbsp;$h_{\rm CRTP}(t)$&nbsp; of the raised-cosine low-pass filter also has zeros at an interval of&nbsp;$\Delta t$ due to the &nbsp;$\rm sinc$&ndash;function.  
 +
*The cosine function has zeros at the following times:
 
:$${\cos(\pi \cdot r \cdot {t}/{ \Delta t}  )}  =  0 \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm
 
:$${\cos(\pi \cdot r \cdot {t}/{ \Delta t}  )}  =  0 \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm
0.5, \pm 1.5, \pm 2.5, ... $$
+
0.5, \pm 1.5, \pm 2.5, \text{...}  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} {t}/{ \Delta t} = \pm
 +
2.5, \pm 7.5, \pm 12.5, ... $$
 
:$$\Rightarrow  \hspace{0.3cm} {t}/{ \Delta t} = \pm
 
:$$\Rightarrow  \hspace{0.3cm} {t}/{ \Delta t} = \pm
2.5, \pm 7.5, \pm 12.5, ... $$
+
2.5, \pm 7.5, \pm 12.5, \text{...}. $$
 
+
*However, the zero of the numerator at&nbsp;$t / \Delta t = 2.5$&nbsp; is nullified by the denominator which also vanishes.  
:Die Nullstelle des Zählers bei <i>t</i>/&Delta;<i>t</i> = 2.5 wird allerdings durch den ebenfalls verschwindenden Nenner zunichte gemacht. Die weiteren Nullstellen bei 7.5, 12.5, usw. bleiben dagegen bestehen.
+
*By contrast, the other zeros at&nbsp;$7.5, 12.5,\text{...} $&nbsp; remain.
 +
*Here, &nbsp;$r = 0$&nbsp; also results in the rectangular low-pass filter and thus in the&nbsp;$\rm sinc$&ndash;shaped impulse response.
 +
*In contrast, the impulse response of the cosine-square low-pass filter&nbsp; $($special case for &nbsp;$r = 1)$&nbsp; decays extremely fast.
 +
*This is studied in detail in&nbsp; [[Aufgaben:Exercise_1.8Z:_Cosine-Square_Low-Pass|Exercise 1.8Z]]&nbsp;.
  
:Auch hier führt <i>r</i> = 0 zum Rechtecktiefpass und damit zur si&ndash;förmigen Impulsantwort. Dagegen klingt die Impulsantwort des Cosinus&ndash;Quadrat&ndash;Tiefpasses (Sonderfall für <i>r</i> = 1) extrem schnell ab. Dieser wird in der Zusatzaufgabe Z1.8 eingehend untersucht.
 
  
:Richtig sind hier die <u>Vorschläge 1, 2 und 4</u>.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.3 Einige systemtheoretische Tiefpassfunktionen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 15:19, 7 October 2021

Trapezoidal low-pass filter (red) and raised-cosine low-pass filter (green)

Two low-pass filters with variable edge steepnesses are compared with each other. For frequencies $|f| ≤ f_1$ ,  $H(f) = 1$  holds in both cases. In contrast, all frequencies $|f| ≥ f_2$  are suppressed entirely.

In the range $f_1 ≤ |f| ≤ f_2$  the frequency responses are defined by the following equations:

  • Trapezoidal low-pass filter  $\rm (TLP)$:
$$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
  • Raised-cosine low-pass filter  $\rm (RCLP)$:
$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$

Alternative system parameters for both low-pass filters are

  • the equivalent bandwidth $Δf$ defined by the equal-area rectangle, and also
  • the roll-off factor (in frequency domain):
$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$

Throughout the task, $Δf = 10 \ \rm kHz$  and  $r = 0.2$ hold true.

The impulse responses are with the equivalent impulse duration $Δt = 1/Δf = 0.1 \ \rm ms$:

$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$
$$h_{\rm CRTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta t )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$





Please note:


Questions

1

What is the equation for the equivalent bandwidth $Δf$?  It holds that

$Δf = f_2 - f_1$,
$Δf = f_1 + f_2$,
$Δf = (f_2 + f_1)/2$.

2

Determine the low-pass filter parameters $f_1$  and $f_2$  for  $Δf = 10 \ \rm kHz$  and  $r = 0.2$.

$f_1 \ = \ $

$\ \rm kHz$
$f_2 \ = \ $

$\ \rm kHz$

3

Which statements are true for the impulse response of the trapezoidal low-pass filter if  $r = 0.2$  is assumed?

$h(t)$  has zeros at  $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
$h(t)$  has additional zeros at other times.
$h(t)$  would decay faster with  $r = 0$ .
$h(t)$  would decay faster with  $r = 1$ .

4

Which statements are true for the impulse response of the raised-cosine low-pass filter if  $r = 0.2$  is assumed?

$h(t)$  has zeros at  $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
$h(t)$  has additional zeros at other times.
$h(t)$  would decay faster with  $r = 0$ .
$h(t)$  would decay faster with  $r = 1$ .


Solution

(1)  Approach 2 is correct:

  • For both low-pass filters, the integral over $H(f)$  is equal to $f_1 + f_2$.
  • Thus, due to $H(f = 0 = 1)$  Approach 2 is correct:   $\Delta f = f_1 + f_2.$


(2)  Substituting the relation found in  (1)  into the defining equation of the roll-off factor the following is obtained:

$${f_2 - f_1} = r \cdot \Delta f = {2\,\rm kHz}, \hspace{0.5cm} {f_2 + f_1} = {10\,\rm kHz}.$$
  • By addition or subtraction of both equations the so-called "corner frequencies" result in
$$f_1 \underline{= 4 \ \rm kHz},$$
$$f_2 \underline{= 6 \ \rm kHz}.$$


(3)  Suggestions 1 and 4 are correct:

  • The first $\rm sinc$–function of $h_{\rm TTP}(t)$  causes zeros at an interval of $\Delta t$  (see also the equation on the information page).
  • The second  $\rm sinc$–function causes zeros at multiples of $5 · \Delta t$.
  • There are no additional zeros since these coincide exactly with the zeros of the first  $\rm sinc$–function.
  • The special case $r = 0$  corresponds to the ideal rectangular low-pass filter with  $\rm sinc$–shaped impulse response. This decays extremely slowly.
  • The  $\rm si^2$–shaped impulse response of the triangular low-pass filter  $($special case for $r = 1)$  decays asymptotically with  $1/t^2$, i.e. faster than with $r = 0.2$.


(4)  Suggestions 1, 2 and 4 are correct here:

  • The impulse response $h_{\rm CRTP}(t)$  of the raised-cosine low-pass filter also has zeros at an interval of $\Delta t$ due to the  $\rm sinc$–function.
  • The cosine function has zeros at the following times:
$${\cos(\pi \cdot r \cdot {t}/{ \Delta t} )} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm 0.5, \pm 1.5, \pm 2.5, \text{...} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {t}/{ \Delta t} = \pm 2.5, \pm 7.5, \pm 12.5, ... $$
$$\Rightarrow \hspace{0.3cm} {t}/{ \Delta t} = \pm 2.5, \pm 7.5, \pm 12.5, \text{...}. $$
  • However, the zero of the numerator at $t / \Delta t = 2.5$  is nullified by the denominator which also vanishes.
  • By contrast, the other zeros at $7.5, 12.5,\text{...} $  remain.
  • Here,  $r = 0$  also results in the rectangular low-pass filter and thus in the $\rm sinc$–shaped impulse response.
  • In contrast, the impulse response of the cosine-square low-pass filter  $($special case for  $r = 1)$  decays extremely fast.
  • This is studied in detail in  Exercise 1.8Z .