Difference between revisions of "Aufgaben:Exercise 3.1: Causality Considerations"

From LNTwww
 
(42 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Folgerungen aus dem Zuordnungssatz
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem
 
}}
 
}}
  
[[File:P_ID1755__LZI_A_3_1.png|right|Zwei Vierpolschaltungen]]
+
[[File:EN_LZI_A_3_1.png|right|frame|Two two-port networks]]
Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion
+
The graph shows above the two-port network with the transfer function
$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
+
:$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt:
+
where  $f_{\rm G}$  represents the  $\rm 3dB$  cut-off frequency:
$$f_{\rm G} = \frac{R}{2 \pi \cdot L}
+
:$$f_{\rm G} = \frac{R}{2 \pi \cdot L}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Durch Hintereinanderschalten $n$ gleich aufgebauter Vierpole $H_1(f)$ kommt man zu der Übertragungsfunktion
+
By cascading  $n$  two-port networks  $H_1(f)$  built in the same way, the following transfer function is obtained:
$$H_n(f) = \left [H_1(f)\right ]^n =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^n}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^n}
+
:$$H_n(f) = \big [H_1(f)\big ]^n =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^n}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^n}
  \hspace{0.05cm}.$$
+
  \hspace{0.05cm}.$$  
 +
 
 +
*Here, a suitable resistor decoupling is presumed,  but this is not important for solving this exercise.
 +
*The lower graph shows for example the realization of the transfer function  $H_2(f)$.
 +
 
  
Vorausgesetzt ist hierbei eine geeignete Widerstandsentkopplung, die aber zur Lösung dieser Aufgabe nicht von Bedeutung ist. Die untere Grafik zeigt zum Beispiel die Realisierung der Übertragungsfunktion $H_2(f)$.
+
In this exercise,  such a two-port network is considered with respect to its causality properties.  
  
In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet. Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion $H(f)$ die [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert–Transformation]], was durch das folgende Kurzzeichen ausgedrückt wird:
+
For any causal system,  the real and imaginary parts of the spectral function  $H(f)$  satisfy the  [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Hilbert transformation|Hilbert transformation]],  which is expressed by the following abbreviation:
$${\rm Im} \left\{ H(f) \right \}  \quad
+
:$${\rm Im} \left\{ H(f) \right \}  \quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
 
{\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$
 
{\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$
  
Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable $x$ ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.
+
Since the Hilbert transformation provides important information not only for transfer functions but also for time signals,  the correspondence is often expressed by the general variable  $x$,  which is to be interpreted - depending on the application - as normalized frequency or as normalized time.
 +
 
 +
 
 +
 
 +
 
  
''Hinweise:''
+
Please note:  
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz|Folgerungen_aus_dem_Zuordnungssatz]].
+
*The exercise belongs to the chapter    [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem|Conclusions from the Allocation Theorem]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Reference is also made to the theory pages  [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Hilbert_transform|Hilbert transformation]]  and  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial fraction decomposition|Partial fraction decomposition]].
 +
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie kann <i>H</i><sub>1</sub>(<i>f</i>) charakterisiert werden?
+
{How can &nbsp;$H_1(f)$&nbsp; be characterized?
|type="[]"}
+
|type="()"}
- <i>H</i><sub>1</sub>(<i>f</i>) beschreibt einen Tiefpass.
+
- $H_1(f)$&nbsp; describes a low-pass filter.
+ <i>H</i><sub>1</sub>(<i>f</i>) beschreibt einen Hochpass.
+
+ $H_1(f)$&nbsp; describes a high-pass filter.
  
  
{Beschreibt <i>H</i><sub>1</sub>(<i>f</i>) ein kausales Netzwerk?
+
{Does &nbsp;$H_1(f)$&nbsp; describe a causal network?
|type="[]"}
+
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
  
  
{Berechnen Sie die Übertragungsfunktion <i>H</i><sub>2</sub>(<i>f</i>). Welcher komplexe Wert ergibt sich für <i>f</i> = <i>f</i><sub>G</sub>?
+
{Compute the transfer function &nbsp;$H_2(f)$. &nbsp; What is the complex value for &nbsp;$f = f_{\rm G}$?
 
|type="{}"}
 
|type="{}"}
$Re{H_2(f = f_G)}$ = { 0 3% }
+
${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $ { 0. }
$Im{H_2(f = f_G)}$ = { 0.5 3% }
+
${\rm Im}\big[H_2(f = f_{\rm G})\big] \ = \ $ { 0.5 3% }
  
  
{Welche der nachfolgenden Aussagen treffen zu?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ <i>H</i><sub>2</sub>(<i>f</i>) beschreibt ein kausales System.
+
+ $H_2(f)$&nbsp; describes a causal system.
+ (<i>x</i><sup>4</sup>&ndash;<i>x</i><sup>2</sup>)/(<i>x</i><sup>4</sup>+2<i>x</i><sup>2</sup>+1) und 2<i>x</i><sup>3</sup>/(<i>x</i><sup>4</sup>+2<i>x</i><sup>2</sup>+1) sind ein Hilbert&ndash;Paar.
+
+ The expressions&nbsp; $(x^4 - x^2)/(x^4 +2 x^2 + 1)$&nbsp; and &nbsp;$2x^3/(x^4 +2 x^2 + 1)$&nbsp; are a Hilbert pair.
- Für <i>n</i> > 2 ist die Kausalitätsbedingung nicht erfüllt.
+
- The causality condition is not satisfied for &nbsp;$n > 2$&nbsp;.
  
  
Line 61: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Mit der angegebenen Übertragungsfunktion kann man nach dem Spannungsteilerprinzip
+
'''(1)'''&nbsp; <u>Proposed solution 2</u>&nbsp; is correct:
 +
*The given transfer function can be computed according to the voltage divider principle. &nbsp; The following holds:
 
:$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
 
:$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
 +
*This is a high-pass filter.
 +
*For very low frequencies, the inductivity&nbsp; $L$&nbsp; constitutes a short circuit.
  
:berechnen &#8658; Es handelt sich um einen <u>Hochpass</u>. Für sehr niedrige Frequenzen stellt die Induktivität <i>L</i> einen Kurzschluss dar.
 
  
:<b>2.</b>&nbsp;&nbsp;Jedes reale Netzwerk ist kausal. Die Impulsantwort <i>h</i>(<i>t</i>) ist gleich dem Ausgangssignal <i>y</i>(<i>t</i>), wenn zum Zeitpunkt <i>t</i> = 0 am Eingang ein extrem kurzfristiger Impuls &ndash; ein sog. Diracimpuls &ndash; angelegt wird. Aus Kausalitätsgründen kann dann natürlich am Ausgang nicht schon für Zeiten <i>t</i> < 0 ein Signal auftreten:
+
 
 +
'''(2)'''&nbsp; <u>Yes</u>&nbsp; is correct:
 +
*Every real network is causal.&nbsp; The impulse response&nbsp; $h(t)$&nbsp; is equal to the output signal&nbsp; $y(t)$&nbsp; if at time&nbsp; $t= 0$&nbsp; an extremely short impulse &ndash; a so-called Dirac delta impulse &ndash; is applied to the input.  
 +
*Then,&nbsp; a signal cannot occur at the output already for times&nbsp; $t< 0$&nbsp; for causality reasons:
 
:$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm}
 
:$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm}
 
  t<0 \hspace{0.05cm}.$$
 
  t<0 \hspace{0.05cm}.$$
 
+
*Formally, this can be shown as follows: &nbsp; The high-pass transfer function&nbsp; $H_1(f)$&nbsp; can be rearranged as follows:
:Formal lässt sich dies folgendermaßen zeigen: Die Hochpass&ndash;Übertragungsfunktion <i>H</i><sub>1</sub>(<i>f</i>) kann wie folgt umgeformt werden:
 
 
:$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
 
:$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
 
  = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}}
 
  = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
*The second transfer function describes the low-pass function equivalent to&nbsp; $H_1(f)$,&nbsp; which results in the exponential function in the time domain.
 +
*The&nbsp; "$1$"&nbsp; becomes a Dirac delta function.&nbsp; Considering&nbsp; $T = 2\pi \cdot f_{\rm G}$&nbsp; the following thus holds for&nbsp; $t \ge 0$:
 +
:$$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
 +
*In contrast,&nbsp; $h_1(t)= 0$ holds for&nbsp; $t< 0$,&nbsp; which would prove causality.
  
:Die zweite Übertragungsfunktion beschreibt die zu <i>H</i><sub>1</sub>(<i>f</i>) äquivalente Tiefpassfunktion, die im Zeitbereich zur Exponentialfunktion führt. Die &bdquo;1&rdquo; wird zu einer Diracfunktion. Mit <i>T</i> = 2&pi; &middot; <i>f</i><sub>G</sub> gilt somit für <i>t</i> &#8805; 0:
 
:$$h_1(t) = \delta(t) - \frac{1}{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
 
  
:Für <i>t</i> < 0 gilt dagegen <i>h</i><sub>1</sub>(<i>t</i>) = 0, womit die Kausalität nachgewiesen wäre &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <u>Antwort Ja</u>.
 
  
:<b>3.</b>&nbsp;&nbsp;Die Hintereinanderschaltung zweier Hochpässe führt zu folgender Übertragungsfunktion:
+
'''(3)'''&nbsp; The series connection of two high-pass filters results in the following transfer function:
:$$H_2(f) = \left [H_1(f)\right ]^2 =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^2}
+
:$$H_2(f) = \big [H_1(f)\big ]^2 =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^2}
  =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2 \cdot \left [(1-{\rm j}\cdot f/f_{\rm G})\right ]^2}
+
  =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2 \cdot \big [(1-{\rm j}\cdot f/f_{\rm G})\big ]^2}
  {\left [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\right ]^2}= \\ = \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2
+
  {\big [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\big ]^2}=  \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2
 
\cdot  (f/f_{\rm G})^3)}
 
\cdot  (f/f_{\rm G})^3)}
  {\left [1+(f/f_{\rm G})^2 \right ]^2}\hspace{0.05cm}.$$
+
  {\big [1+(f/f_{\rm G})^2 \big ]^2}\hspace{0.05cm}.$$
  
:Mit <i>f</i> = <i>f</i><sub>G</sub> folgt daraus:
+
*With&nbsp; $f = f_{\rm G}$&nbsp; from this it follows that:
 
:$$H_2(f = f_{\rm G})  = \frac{1 - 1 +{\rm j}\cdot 2}
 
:$$H_2(f = f_{\rm G})  = \frac{1 - 1 +{\rm j}\cdot 2}
  {4}= \frac{\rm j} {2}$$
+
  {4}= {\rm j} /{2} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0}, \hspace{0.4cm}
:$$\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \}  = 0, \hspace{0.4cm}
 
 
  {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$
 
  {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Richtig sind hier <u>die beiden ersten Lösungsvorschläge</u>. Da <i>h</i><sub>1</sub>(<i>t</i>) = 0 für <i>t</i> < 0 ist, erfüllt auch die Faltungsoperation <i>h</i><sub>2</sub>(<i>t</i>) = <i>h</i><sub>1</sub>(<i>t</i>) &#8727; <i>h</i><sub>1</sub>(<i>t</i>) die Kausalitätsbedingung. Ebenso ergibt die <i>n</i>&ndash;fache Faltung eine kausale Impulsantwort:
 
:$$h_n(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm}
 
t<0 \hspace{0.05cm}.$$
 
  
:Bei kausaler Impulsantwort <i>h</i><sub>2</sub>(<i>t</i>) hängen aber der Real&ndash; und der Imaginärteil der Spektralfunktion <i>H</i><sub>2</sub>(<i>f</i>) über die Hilbert&ndash;Transformation zusammen. Mit der Abkürzung <i>x</i> = <i>f</i>/<i>f</i><sub>G</sub> und dem Ergebnis aus der Teilaufgabe 3) gilt somit:
+
 
 +
'''(4)'''&nbsp; <u>The first two proposed solutions</u>&nbsp; are correct:
 +
*Since the impulse response is &nbsp;$h_1(t) = 0$&nbsp; for &nbsp;$t < 0$,&nbsp; the convolution operation &nbsp;$h_2(t) = h_1(t) \star h_1(t)$&nbsp; also satisfies the causality condition.&nbsp;
 +
*Similarly, the&nbsp; $n$&ndash;fold convolution yields a causal impulse response: &nbsp;  $h_n(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm}
 +
t<0 \hspace{0.05cm}.$
 +
*However,&nbsp; the real and imaginary parts of the spectral function &nbsp;$H_2(f)$&nbsp; are related via the Hilbert transformation for a causal impulse response &nbsp;$h_2(t)$&nbsp;.&nbsp;
 +
*Thus,&nbsp; considering the shortcut &nbsp;$x = f/f_{\rm G}$&nbsp; and the result of the subtask&nbsp; '''(3)'''&nbsp; the following holds:
 
:$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad
 
:$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
Line 107: Line 123:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.1 Folgerungen aus dem Zuordnungssatz^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.1 Conclusions from the Assignment Theorem^]]

Latest revision as of 16:10, 9 October 2021

Two two-port networks

The graph shows above the two-port network with the transfer function

$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm},$$

where  $f_{\rm G}$  represents the  $\rm 3dB$  cut-off frequency:

$$f_{\rm G} = \frac{R}{2 \pi \cdot L} \hspace{0.05cm}.$$

By cascading  $n$  two-port networks  $H_1(f)$  built in the same way, the following transfer function is obtained:

$$H_n(f) = \big [H_1(f)\big ]^n =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^n}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^n} \hspace{0.05cm}.$$
  • Here, a suitable resistor decoupling is presumed,  but this is not important for solving this exercise.
  • The lower graph shows for example the realization of the transfer function  $H_2(f)$.


In this exercise,  such a two-port network is considered with respect to its causality properties.

For any causal system,  the real and imaginary parts of the spectral function  $H(f)$  satisfy the  Hilbert transformation,  which is expressed by the following abbreviation:

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$

Since the Hilbert transformation provides important information not only for transfer functions but also for time signals,  the correspondence is often expressed by the general variable  $x$,  which is to be interpreted - depending on the application - as normalized frequency or as normalized time.



Please note:


Questions

1

How can  $H_1(f)$  be characterized?

$H_1(f)$  describes a low-pass filter.
$H_1(f)$  describes a high-pass filter.

2

Does  $H_1(f)$  describe a causal network?

Yes.
No.

3

Compute the transfer function  $H_2(f)$.   What is the complex value for  $f = f_{\rm G}$?

${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $

${\rm Im}\big[H_2(f = f_{\rm G})\big] \ = \ $

4

Which of the following statements are true?

$H_2(f)$  describes a causal system.
The expressions  $(x^4 - x^2)/(x^4 +2 x^2 + 1)$  and  $2x^3/(x^4 +2 x^2 + 1)$  are a Hilbert pair.
The causality condition is not satisfied for  $n > 2$ .


Solution

(1)  Proposed solution 2  is correct:

  • The given transfer function can be computed according to the voltage divider principle.   The following holds:
$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
  • This is a high-pass filter.
  • For very low frequencies, the inductivity  $L$  constitutes a short circuit.


(2)  Yes  is correct:

  • Every real network is causal.  The impulse response  $h(t)$  is equal to the output signal  $y(t)$  if at time  $t= 0$  an extremely short impulse – a so-called Dirac delta impulse – is applied to the input.
  • Then,  a signal cannot occur at the output already for times  $t< 0$  for causality reasons:
$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
  • Formally, this can be shown as follows:   The high-pass transfer function  $H_1(f)$  can be rearranged as follows:
$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm}.$$
  • The second transfer function describes the low-pass function equivalent to  $H_1(f)$,  which results in the exponential function in the time domain.
  • The  "$1$"  becomes a Dirac delta function.  Considering  $T = 2\pi \cdot f_{\rm G}$  the following thus holds for  $t \ge 0$:
$$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
  • In contrast,  $h_1(t)= 0$ holds for  $t< 0$,  which would prove causality.


(3)  The series connection of two high-pass filters results in the following transfer function:

$$H_2(f) = \big [H_1(f)\big ]^2 =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^2} =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2 \cdot \big [(1-{\rm j}\cdot f/f_{\rm G})\big ]^2} {\big [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\big ]^2}= \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2 \cdot (f/f_{\rm G})^3)} {\big [1+(f/f_{\rm G})^2 \big ]^2}\hspace{0.05cm}.$$
  • With  $f = f_{\rm G}$  from this it follows that:
$$H_2(f = f_{\rm G}) = \frac{1 - 1 +{\rm j}\cdot 2} {4}= {\rm j} /{2} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0}, \hspace{0.4cm} {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$


(4)  The first two proposed solutions  are correct:

  • Since the impulse response is  $h_1(t) = 0$  for  $t < 0$,  the convolution operation  $h_2(t) = h_1(t) \star h_1(t)$  also satisfies the causality condition. 
  • Similarly, the  $n$–fold convolution yields a causal impulse response:   $h_n(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$
  • However,  the real and imaginary parts of the spectral function  $H_2(f)$  are related via the Hilbert transformation for a causal impulse response  $h_2(t)$ . 
  • Thus,  considering the shortcut  $x = f/f_{\rm G}$  and the result of the subtask  (3)  the following holds:
$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{2x^3}{x^4+2 x^2+1}\hspace{0.05cm}.$$