Difference between revisions of "Aufgaben:Exercise 1.4Z: Representation of Oscillations"

From LNTwww
m
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID969__Mod_Z_1_4.png|right|frame|Zwei Darstellungen einer harmonischen Schwingung]]
+
[[File:P_ID969__Mod_Z_1_4.png|right|frame|Two representations of a harmonic oscillation]]
Betrachtet wird eine harmonische Schwingung  $z(t)$, die zusammen mit dem zugehörigen analytischen Signal  $z_+(t)$  in der Grafik dargestellt ist.  Diese Signale können mathematisch wie folgt beschrieben werden:
+
Here, we consider a harmonic oscillation  $z(t)$, which is shown in the graph together with the corresponding analytical signal   $z_+(t)$ . These signals can be described mathematically as follows:
 
:$$z(t)  =  A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})=  A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$  
 
:$$z(t)  =  A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})=  A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$  
 
:$$ z_+(t)  =  A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}$$
 
:$$ z_+(t)  =  A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}$$
Die zwei Amplitudenparameter  $A_{\rm T} $  und  $A_0$  sind jeweils dimensionslos, der Phasenwert  $ϕ_{\rm T} $  soll zwischen  $\text{±π}$  liegen und die Laufzeit  $τ$  ist nicht negativ.
+
The two amplitude parameters  $A_{\rm T} $  and  $A_0$  are each dimensionless, the phase value  $ϕ_{\rm T} $  is supposed to lie between  $\text{±π}$ , and the duration τ $τ$  is non-negative.
  
Die Teilaufgabe  '''(4)'''  bezieht sich auf das äquivalente Tiefpass–Signal  $z_{\rm TP}(t)$, das mit  $z_+(t)$  wie folgt zusammenhängt:
+
Subtask   '''(4)'''  refers to the equivalent lowpass signal  $z_{\rm TP}(t)$, which is related to  $z_+(t)$  as follows:
 
:$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$
 
:$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$
  
Beachten Sie weiter, dass  $ϕ_{\rm T}$  in obiger Gleichung mit positivem Vorzeichen erscheint.  Unter "Anmerkungen zur Nomenklatur" finden Sie unten eine Begründung für die unterschiedliche Verwendung von  $φ_{\rm T}$  und  $ϕ_{\rm T} = – φ_{\rm T}$.
+
Further note that  $ϕ_{\rm T}$  ppears in the above equation with a positive sign.  See "Notes on Nomenclature" below for reasons for the differential usage of  $φ_{\rm T}$  and  $ϕ_{\rm T} = – φ_{\rm T}$.
  
  
''Anmerkung zur Nomenklatur:''
+
''Notes on Nomenclature:''
*In diesem Tutorial geht – wie auch in anderer Literatur üblich – bei der Beschreibung von harmonischer Schwingung, Fourierreihe und Fourierintegral die Phase mit negativem Vorzeichen in die Gleichungen ein, während in Zusammenhang mit Modulationsverfahren die Phase stets mit einem Pluszeichen angesetzt wird.  
+
*In this tutorial, as is common in other literature, the phase enters the equations with a negative sign when describing harmonic oscillation, Fourier series, and Fourier integrals, whereas in the context of modulation methods, the phase is always given a plus sign.
*Zur Unterscheidung dieser beiden Varianten benutzen wir  $\phi_{\rm T}$ und $\varphi_{\rm T} = - \phi_{\rm T}$.  Beide Symbole kennzeichnen das kleine griechische „phi”, wobei die Schreibweise  $\phi$  vorwiegend im anglo-amerikanischen und $\varphi$ im deutschen Sprachraum angewandt wird.
+
*To distinguish these two variants, we use  $\phi_{\rm T}$ and $\varphi_{\rm T} = - \phi_{\rm T}$.  Both symbols denote the lowercase Greek "phi", with the notation  $\phi$  used predominantly in Anglo-American contexts, and $\varphi$ in German.
*Die Phasenwerte  $\varphi_{\rm T} = 90^\circ$ und $\phi_{\rm T} = -90^\circ$  sind somit äquivalent und stehen beide für die Sinusfunktion:
+
*The phase values  $\varphi_{\rm T} = 90^\circ$ and $\phi_{\rm T} = -90^\circ$  are thus equivalent and both represent the sine function:
 
:$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T})  = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$
 
:$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T})  = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$
  
Line 27: Line 27:
  
  
''Weitere Hinweise:''  
+
''Further hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Allgemeines_Modell_der_Modulation|Allgemeines Modell der Modulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Allgemeines_Modell_der_Modulation|General Model of Modulation]].
*Bezug genommen wird insbesondere auf die Seite   [[Modulation_Methods/Allgemeines_Modell_der_Modulation#Beschreibung_des_physikalischen_Signals_mit_Hilfe_des_.C3.A4quivalenten_TP-Signals|Beschreibung des physikalischen Signals mit Hilfe des äquivalenten Tiefpass-Signals]].
+
*Particular reference is made to the page   [[Modulation_Methods/Allgemeines_Modell_der_Modulation#Beschreibung_des_physikalischen_Signals_mit_Hilfe_des_.C3.A4quivalenten_TP-Signals|Describing the physical signal using the equivalent lowpass signal]].
*Weitere Informationen zu dieser Thematik finden Sie in den Kapiteln  des Buches „Signaldarstellung”:  
+
*Further information on this topic can be found in the following chapters of the book "Signal Representation":  
::(1)   [[ Signal_Representation/Harmonic_Oscillation|Harmonische Schwingung]],  
+
::(1)   [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]],  
::(2)  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytisches Signal und zugehörige Spektralfunktion]]  und
+
::(2)  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]]  and
::(3)  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function| Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
+
::(3)  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function| Equivalent Low-Pass Signal and its Spectral Function]].
 
   
 
   
*In unserem Tutorial $\rm LNTwww$ wird die Darstellung des analytischen Signals  $s_+(t)$  in der komplexen Ebene teilweise auch als „Zeigerdiagramm” bezeichnet, während die „Ortskurve” den zeitlichen Verlauf des äquivalenten TP–Signals  $s_{\rm TP}(t)$  angibt. Wir verweisen auf die entsprechenden interaktiven Applets  
+
*In our tutorial $\rm LNTwww$, the representation of the analytical signal  $s_+(t)$  in der komplexen Ebene teilweise auch als „Zeigerdiagramm” bezeichnet, während die „Ortskurve” den zeitlichen Verlauf des äquivalenten TP–Signals  $s_{\rm TP}(t)$  angibt. Wir verweisen auf die entsprechenden interaktiven Applets  
 
::(1)  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal ]],
 
::(1)  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal ]],
 
::(2)  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]].
 
::(2)  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]].

Revision as of 18:11, 11 November 2021

Two representations of a harmonic oscillation

Here, we consider a harmonic oscillation  $z(t)$, which is shown in the graph together with the corresponding analytical signal  $z_+(t)$ . These signals can be described mathematically as follows:

$$z(t) = A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})= A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$
$$ z_+(t) = A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}$$

The two amplitude parameters  $A_{\rm T} $  and  $A_0$  are each dimensionless, the phase value  $ϕ_{\rm T} $  is supposed to lie between  $\text{±π}$ , and the duration τ $τ$  is non-negative.

Subtask   (4)  refers to the equivalent lowpass signal  $z_{\rm TP}(t)$, which is related to  $z_+(t)$  as follows:

$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$

Further note that  $ϕ_{\rm T}$  ppears in the above equation with a positive sign.  See "Notes on Nomenclature" below for reasons for the differential usage of  $φ_{\rm T}$  and  $ϕ_{\rm T} = – φ_{\rm T}$.


Notes on Nomenclature:

  • In this tutorial, as is common in other literature, the phase enters the equations with a negative sign when describing harmonic oscillation, Fourier series, and Fourier integrals, whereas in the context of modulation methods, the phase is always given a plus sign.
  • To distinguish these two variants, we use  $\phi_{\rm T}$ and $\varphi_{\rm T} = - \phi_{\rm T}$.  Both symbols denote the lowercase Greek "phi", with the notation  $\phi$  used predominantly in Anglo-American contexts, and $\varphi$ in German.
  • The phase values  $\varphi_{\rm T} = 90^\circ$ and $\phi_{\rm T} = -90^\circ$  are thus equivalent and both represent the sine function:
$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T}) = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$




Further hints:

(1)   Harmonic Oscillation,
(2)  Analytical Signal and its Spectral Function  and
(3)  Equivalent Low-Pass Signal and its Spectral Function.
  • In our tutorial $\rm LNTwww$, the representation of the analytical signal  $s_+(t)$  in der komplexen Ebene teilweise auch als „Zeigerdiagramm” bezeichnet, während die „Ortskurve” den zeitlichen Verlauf des äquivalenten TP–Signals  $s_{\rm TP}(t)$  angibt. Wir verweisen auf die entsprechenden interaktiven Applets
(1)  Physikalisches Signal & Analytisches Signal ,
(2)  Physikalisches Signal & Äquivalentes TP-Signal.


Fragebogen

1

Berechnen Sie die Signalparameter  $A_{\rm T}$,  $f_{\rm T}$  und  $ω_{\rm T}$.

$A_{\rm T} \ = \ $

$f_{\rm T} \ = \ $

$\ \text{Hz}$
$\omega_{\rm T} \ = \ $

$\ \text{1/s}$

2

Bestimmen Sie die Phase  $\phi_{\rm T}$  $($zwischen $±180^\circ)$ und die Laufzeit  $τ$.

$\phi_{\rm T} \ = \ $

$\ \text{Grad}$
$τ \ = \ $

$\ \text{ms}$

3

Zu welcher Zeit  $t_1 > 0$  ist das analytische Signal  $z_+(t)$  erstmalig imaginär?

$t_1 \ = \ $

$\ \text{ms}$

4

Wie lautet das äquivalente Tiefpass–Signal  $z_{\rm TP}(t)$?  Geben Sie zur Kontrolle den Wert bei  $t = 1 \text{ ms}$ ein.

${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

${\rm Im}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

5

Welche der Aussagen gelten für alle harmonischen Schwingungen?

Das Spektrum  $Z(f)$  besteht aus zwei Diracfunktionen bei  $±f_{\rm T}$.
Das Spektrum  $Z_+(f)$  weist eine Diracfunktion bei  $–f_{\rm T}$ auf.
Das Spektrum  $Z_{\rm TP}(f)$  beinhaltet eine Diracfunktion bei  $f = 0$.
Das analytische Signal  $z_+(t)$  ist stets komplex.
Das äquivalente TP–Signal  $z_{\rm TP}(t)$  ist stets komplex.


Musterlösung

(1)  Aus der grafischen Darstellung der Zeitfunktion  $z(t)$  erkennt man

  • die (normierte) Amplitude  $A_{\rm T}\hspace{0.15cm}\underline{ = 2}$  und die Periodendauer  $T_0=2$  Millisekunden.
  • Deshalb ist die Signalfrequenz  $f_{\rm T} = 1/T_0\hspace{0.15cm}\underline{ = 500}$  Hz und die Kreisfrequenz beträgt  $ω_{\rm T}= 2πf_{\rm T} \hspace{0.15cm}\underline{ = 3141.5}$  1/s.


(2)  Das analytische Signal lautet allgemein:

$$z_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}(\omega_{\rm T}\cdot \hspace{0.05cm}t + \phi_{\rm T})} = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t }\hspace{0.05cm}.$$
  • Gleichzeitig gilt der Zusammenhang:
$$A_0 = z_+(t = 0) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \hspace{0.05cm}.$$
  • Die komplexe Amplitude  $A_0$  kann aus der oberen Grafik abgelesen werden.
$$A_0 = - \sqrt{2} - {\rm j} \cdot \sqrt{2} = A_{\rm 0} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 0.75 \pi} \hspace{0.05cm}.$$
  • Ein Vergleich beider Gleichungen führt zum Ergebnis:
$$ \phi_{\rm T} = - 0.75 \pi \hspace{0.15cm}\underline {= - 135^{\circ}} \hspace{0.05cm}.$$
  • Dabei besteht folgender Zusammenhang mit der Laufzeit  $τ$:
$$\phi_{\rm T} = - 2 \pi \cdot f_{\rm T} \cdot \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau = \frac{-\phi_{\rm T}}{2 \pi \cdot f_{\rm T}} = \frac{0.75 \pi}{2 \pi \cdot 0.5\,{\rm kHz}} \hspace{0.15cm}\underline {= 0.75 \,{\rm ms}} \hspace{0.05cm}.$$


(3)  Das analytische Signal legt in der Zeit  $T_0$  genau eine Umdrehung zurück.

  • Ausgehend von  $A_0$  erreicht man somit nach  $t_1 = T_0/8\hspace{0.15cm}\underline{ = 0.25}$  ms zum ersten Mal, dass das analytische Signal imaginär ist:
$$z_+(t_1) = - 2 {\rm j}.$$
  • Wegen der Beziehung  $z(t) = {\rm Re}[z_+(t)]$  tritt zu diesem Zeitpunkt  $t_1$  auch der erste Nulldurchgang des Signals  $z(t)$  auf.


(4)  Mit dem Ergebnis der Teilaufgabe  (2)  erhält man:

$$ z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_0 = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{\rm T}} = {\rm const.}$$
  • Somit gilt für alle Zeiten  $t$  und damit auch für  $t = 1$ ms:
$${\rm Re}[z_{\rm TP}(t)] = - \sqrt{2} \hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm},$$
$$ {\rm Im}[z_{\rm TP}(t)] = - \sqrt{2}\hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm}.$$


(5)  Richtig sind die Aussagen 1, 3 und 4:

  • Die einzige Diracfunktion von  $Z_+(f)$  liegt bei  $f = f_{\rm T}$  und nicht bei  $–f_{\rm T}$.
  • Das analytische Signal einer harmonischen Schwingung ist immer komplex.
  • Das äquivalente TP–Signal einer harmonischen Schwingung ist meistens komplex.  Ausnahme:
$$z(t) = ±A_{\rm T} · \cos(ω_{\rm T} · t) \ \Rightarrow \ z_{\rm TP}(t) = ±A_{\rm T}.$$