Difference between revisions of "Aufgaben:Exercise 1.4Z: Representation of Oscillations"

From LNTwww
m
m
Line 35: Line 35:
 
::(3)  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function| Equivalent Low-Pass Signal and its Spectral Function]].
 
::(3)  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function| Equivalent Low-Pass Signal and its Spectral Function]].
 
   
 
   
*In our tutorial $\rm LNTwww$, the representation of the analytical signal  $s_+(t)$  in der komplexen Ebene teilweise auch als „Zeigerdiagramm” bezeichnet, während die „Ortskurve” den zeitlichen Verlauf des äquivalenten TP–Signals  $s_{\rm TP}(t)$  angibt. Wir verweisen auf die entsprechenden interaktiven Applets  
+
*In our tutorial $\rm LNTwww$, the plot of the analytical signal  $s_+(t)$  in the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
::(1)  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal ]],
+
::(1)  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physical & Analytic Signal]],
::(2)  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]].
+
::(2)  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physical Signal & Equivalent Lowpass Signal]].
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Signalparameter &nbsp;$A_{\rm T}$, &nbsp;$f_{\rm T}$&nbsp; und &nbsp;$ω_{\rm T}$.
+
{Calculate the signal parameters &nbsp;$A_{\rm T}$, &nbsp;$f_{\rm T}$&nbsp; and &nbsp;$ω_{\rm T}$.
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm T} \ = \ $  { 2 3% }
 
$A_{\rm T} \ = \ $  { 2 3% }
Line 51: Line 51:
 
$\omega_{\rm T} \ = \ $ { 3141.5 3% } $\ \text{1/s}$
 
$\omega_{\rm T} \ = \ $ { 3141.5 3% } $\ \text{1/s}$
  
{Bestimmen Sie die Phase &nbsp;$\phi_{\rm T}$&nbsp; $($zwischen $±180^\circ)$ und die Laufzeit &nbsp;$τ$.
+
{Determine the phase &nbsp;$\phi_{\rm T}$&nbsp; $($zwischen $±180^\circ)$ and the duration &nbsp;$τ$.
 
|type="{}"}
 
|type="{}"}
 
$\phi_{\rm T}  \ = \ $ { -139--131 } $\ \text{Grad}$  
 
$\phi_{\rm T}  \ = \ $ { -139--131 } $\ \text{Grad}$  
 
$τ \ = \ $ { 0.75 3% } $\ \text{ms}$
 
$τ \ = \ $ { 0.75 3% } $\ \text{ms}$
  
{Zu welcher Zeit &nbsp;$t_1 > 0$&nbsp; ist das analytische Signal &nbsp;$z_+(t)$&nbsp; erstmalig imaginär?
+
{At what time &nbsp;$t_1 > 0$&nbsp; does the analytical signal &nbsp;$z_+(t)$&nbsp; first become imaginary?
 
|type="{}"}
 
|type="{}"}
 
$t_1 \ = \ $ { 0.25 3% } $\ \text{ms}$
 
$t_1 \ = \ $ { 0.25 3% } $\ \text{ms}$
  
{Wie lautet das äquivalente Tiefpass–Signal &nbsp;$z_{\rm TP}(t)$?&nbsp; Geben Sie zur Kontrolle den Wert bei &nbsp;$t = 1 \text{ ms}$ ein.
+
{What is the equivalent low-pass signal &nbsp;$z_{\rm TP}(t)$?&nbsp; Enter the value at &nbsp;$t = 1 \text{ ms}$ ms to check.
 
|type="{}"}  
 
|type="{}"}  
 
${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }  
 
${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }  
 
${\rm Im}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }
 
${\rm Im}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $ { -1.454--1.374 }
  
{Welche der Aussagen gelten für alle harmonischen Schwingungen?
+
{Which of these statements are valid for all harmonic oscillations?
 
|type="[]"}
 
|type="[]"}
+ Das Spektrum &nbsp;$Z(f)$&nbsp; besteht aus zwei Diracfunktionen bei &nbsp;$±f_{\rm T}$.
+
+ The spectrum &nbsp;$Z(f)$&nbsp; consists of two Dirac functions at &nbsp;$±f_{\rm T}$.
- Das Spektrum &nbsp;$Z_+(f)$&nbsp; weist eine Diracfunktion bei &nbsp;$–f_{\rm T}$ auf.
+
- The spectrum &nbsp;$Z_+(f)$&nbsp; has one Dirac function at &nbsp;$–f_{\rm T}$.
+ Das Spektrum &nbsp;$Z_{\rm TP}(f)$&nbsp; beinhaltet eine Diracfunktion bei &nbsp;$f = 0$.
+
+ The spectrum &nbsp;$Z_{\rm TP}(f)$&nbsp; contains a Dirac function at &nbsp;$f = 0$.
+ Das analytische Signal &nbsp;$z_+(t)$&nbsp; ist stets komplex.
+
+ The analytical signal &nbsp;$z_+(t)$&nbsp; is always complex.
- Das äquivalente TP–Signal &nbsp;$z_{\rm TP}(t)$&nbsp; ist stets komplex.
+
- The equivalent lowpass signal &nbsp;$z_{\rm TP}(t)$&nbsp; is always complex.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der grafischen Darstellung der Zeitfunktion&nbsp; $z(t)$&nbsp; erkennt man
+
'''(1)'''&nbsp; In the graphical representation of the time function &nbsp; $z(t)$&nbsp;, one can identify
*die (normierte) Amplitude&nbsp; $A_{\rm T}\hspace{0.15cm}\underline{ = 2}$&nbsp; und die Periodendauer&nbsp; $T_0=2$&nbsp; Millisekunden.  
+
*the (normalized) amplitude&nbsp; $A_{\rm T}\hspace{0.15cm}\underline{ = 2}$&nbsp; and the period&nbsp; $T_0=2$&nbsp; milliseconds.  
*Deshalb ist die Signalfrequenz&nbsp; $f_{\rm T} = 1/T_0\hspace{0.15cm}\underline{ = 500}$&nbsp; Hz und die Kreisfrequenz beträgt&nbsp; $ω_{\rm T}= 2πf_{\rm T} \hspace{0.15cm}\underline{ = 3141.5}$&nbsp; 1/s.
+
*Therefore, the signal frequency is &nbsp; $f_{\rm T} = 1/T_0\hspace{0.15cm}\underline{ = 500}$&nbsp; Hz and the angular frequency is&nbsp; $ω_{\rm T}= 2πf_{\rm T} \hspace{0.15cm}\underline{ = 3141.5}$&nbsp; 1/s.
  
  
'''(2)'''&nbsp; Das analytische Signal lautet allgemein:
+
'''(2)'''&nbsp; The analytical signal is generally:
 
:$$z_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}(\omega_{\rm T}\cdot \hspace{0.05cm}t + \phi_{\rm T})} = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t }\hspace{0.05cm}.$$
 
:$$z_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}(\omega_{\rm T}\cdot \hspace{0.05cm}t + \phi_{\rm T})} = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t }\hspace{0.05cm}.$$
*Gleichzeitig gilt der Zusammenhang:
+
*At the same time the relationship:
 
:$$A_0 = z_+(t = 0) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \hspace{0.05cm}.$$
 
:$$A_0 = z_+(t = 0) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \hspace{0.05cm}.$$
*Die komplexe Amplitude&nbsp; $A_0$&nbsp; kann aus der oberen Grafik abgelesen werden.
+
*The complex amplitude&nbsp; $A_0$&nbsp; can be read from the upper plot.
 
:$$A_0 = - \sqrt{2} - {\rm j} \cdot \sqrt{2} = A_{\rm 0} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 0.75 \pi} \hspace{0.05cm}.$$
 
:$$A_0 = - \sqrt{2} - {\rm j} \cdot \sqrt{2} = A_{\rm 0} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 0.75 \pi} \hspace{0.05cm}.$$
*Ein Vergleich beider Gleichungen führt zum Ergebnis:
+
*A comparison of both equations leads to the result:
 
:$$ \phi_{\rm T} = - 0.75 \pi \hspace{0.15cm}\underline {= - 135^{\circ}} \hspace{0.05cm}.$$
 
:$$ \phi_{\rm T} = - 0.75 \pi \hspace{0.15cm}\underline {= - 135^{\circ}} \hspace{0.05cm}.$$
*Dabei besteht folgender Zusammenhang mit der Laufzeit&nbsp; $τ$:
+
*Thereby, the following relationship exists with the duration&nbsp; $τ$:
 
:$$\phi_{\rm T} = - 2 \pi \cdot f_{\rm T} \cdot \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau = \frac{-\phi_{\rm T}}{2 \pi \cdot f_{\rm T}} = \frac{0.75 \pi}{2 \pi \cdot 0.5\,{\rm kHz}} \hspace{0.15cm}\underline {= 0.75 \,{\rm ms}} \hspace{0.05cm}.$$
 
:$$\phi_{\rm T} = - 2 \pi \cdot f_{\rm T} \cdot \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau = \frac{-\phi_{\rm T}}{2 \pi \cdot f_{\rm T}} = \frac{0.75 \pi}{2 \pi \cdot 0.5\,{\rm kHz}} \hspace{0.15cm}\underline {= 0.75 \,{\rm ms}} \hspace{0.05cm}.$$
  

Revision as of 18:23, 11 November 2021

Two representations of a harmonic oscillation

Here, we consider a harmonic oscillation  $z(t)$, which is shown in the graph together with the corresponding analytical signal  $z_+(t)$ . These signals can be described mathematically as follows:

$$z(t) = A_{\rm T} \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})= A_{\rm T} \cdot \cos(2 \pi f_{\rm T}( t - \tau)) \hspace{0.05cm},$$
$$ z_+(t) = A_{\rm 0} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}$$

The two amplitude parameters  $A_{\rm T} $  and  $A_0$  are each dimensionless, the phase value  $ϕ_{\rm T} $  is supposed to lie between  $\text{±π}$ , and the duration τ $τ$  is non-negative.

Subtask   (4)  refers to the equivalent lowpass signal  $z_{\rm TP}(t)$, which is related to  $z_+(t)$  as follows:

$$z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t}.$$

Further note that  $ϕ_{\rm T}$  ppears in the above equation with a positive sign.  See "Notes on Nomenclature" below for reasons for the differential usage of  $φ_{\rm T}$  and  $ϕ_{\rm T} = – φ_{\rm T}$.


Notes on Nomenclature:

  • In this tutorial, as is common in other literature, the phase enters the equations with a negative sign when describing harmonic oscillation, Fourier series, and Fourier integrals, whereas in the context of modulation methods, the phase is always given a plus sign.
  • To distinguish these two variants, we use  $\phi_{\rm T}$ and $\varphi_{\rm T} = - \phi_{\rm T}$.  Both symbols denote the lowercase Greek "phi", with the notation  $\phi$  used predominantly in Anglo-American contexts, and $\varphi$ in German.
  • The phase values  $\varphi_{\rm T} = 90^\circ$ and $\phi_{\rm T} = -90^\circ$  are thus equivalent and both represent the sine function:
$$\cos(2 \pi f_0 t - 90^{\circ}) = \cos(2 \pi f_0 t - \varphi_{\rm T}) = \cos(2 \pi f_0 t + \phi_{\rm T}) = \sin(2 \pi f_0 t ).$$




Further hints:

(1)   Harmonic Oscillation,
(2)  Analytical Signal and its Spectral Function  and
(3)  Equivalent Low-Pass Signal and its Spectral Function.
  • In our tutorial $\rm LNTwww$, the plot of the analytical signal  $s_+(t)$  in the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
(1)  Physical & Analytic Signal,
(2)  Physical Signal & Equivalent Lowpass Signal.


Questions

1

Calculate the signal parameters  $A_{\rm T}$,  $f_{\rm T}$  and  $ω_{\rm T}$.

$A_{\rm T} \ = \ $

$f_{\rm T} \ = \ $

$\ \text{Hz}$
$\omega_{\rm T} \ = \ $

$\ \text{1/s}$

2

Determine the phase  $\phi_{\rm T}$  $($zwischen $±180^\circ)$ and the duration  $τ$.

$\phi_{\rm T} \ = \ $

$\ \text{Grad}$
$τ \ = \ $

$\ \text{ms}$

3

At what time  $t_1 > 0$  does the analytical signal  $z_+(t)$  first become imaginary?

$t_1 \ = \ $

$\ \text{ms}$

4

What is the equivalent low-pass signal  $z_{\rm TP}(t)$?  Enter the value at  $t = 1 \text{ ms}$ ms to check.

${\rm Re}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

${\rm Im}\big[z_{\rm TP}(t = 1\ \rm ms)\big] \ = \ $

5

Which of these statements are valid for all harmonic oscillations?

The spectrum  $Z(f)$  consists of two Dirac functions at  $±f_{\rm T}$.
The spectrum  $Z_+(f)$  has one Dirac function at  $–f_{\rm T}$.
The spectrum  $Z_{\rm TP}(f)$  contains a Dirac function at  $f = 0$.
The analytical signal  $z_+(t)$  is always complex.
The equivalent lowpass signal  $z_{\rm TP}(t)$  is always complex.


Solution

(1)  In the graphical representation of the time function   $z(t)$ , one can identify

  • the (normalized) amplitude  $A_{\rm T}\hspace{0.15cm}\underline{ = 2}$  and the period  $T_0=2$  milliseconds.
  • Therefore, the signal frequency is   $f_{\rm T} = 1/T_0\hspace{0.15cm}\underline{ = 500}$  Hz and the angular frequency is  $ω_{\rm T}= 2πf_{\rm T} \hspace{0.15cm}\underline{ = 3141.5}$  1/s.


(2)  The analytical signal is generally:

$$z_+(t) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}(\omega_{\rm T}\cdot \hspace{0.05cm}t + \phi_{\rm T})} = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t }\hspace{0.05cm}.$$
  • At the same time the relationship:
$$A_0 = z_+(t = 0) = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} \phi_{\rm T}} \hspace{0.05cm}.$$
  • The complex amplitude  $A_0$  can be read from the upper plot.
$$A_0 = - \sqrt{2} - {\rm j} \cdot \sqrt{2} = A_{\rm 0} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 0.75 \pi} \hspace{0.05cm}.$$
  • A comparison of both equations leads to the result:
$$ \phi_{\rm T} = - 0.75 \pi \hspace{0.15cm}\underline {= - 135^{\circ}} \hspace{0.05cm}.$$
  • Thereby, the following relationship exists with the duration  $τ$:
$$\phi_{\rm T} = - 2 \pi \cdot f_{\rm T} \cdot \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau = \frac{-\phi_{\rm T}}{2 \pi \cdot f_{\rm T}} = \frac{0.75 \pi}{2 \pi \cdot 0.5\,{\rm kHz}} \hspace{0.15cm}\underline {= 0.75 \,{\rm ms}} \hspace{0.05cm}.$$


(3)  Das analytische Signal legt in der Zeit  $T_0$  genau eine Umdrehung zurück.

  • Ausgehend von  $A_0$  erreicht man somit nach  $t_1 = T_0/8\hspace{0.15cm}\underline{ = 0.25}$  ms zum ersten Mal, dass das analytische Signal imaginär ist:
$$z_+(t_1) = - 2 {\rm j}.$$
  • Wegen der Beziehung  $z(t) = {\rm Re}[z_+(t)]$  tritt zu diesem Zeitpunkt  $t_1$  auch der erste Nulldurchgang des Signals  $z(t)$  auf.


(4)  Mit dem Ergebnis der Teilaufgabe  (2)  erhält man:

$$ z_{\rm TP}(t) = z_+(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_0 = A_{\rm T} \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{\rm T}} = {\rm const.}$$
  • Somit gilt für alle Zeiten  $t$  und damit auch für  $t = 1$ ms:
$${\rm Re}[z_{\rm TP}(t)] = - \sqrt{2} \hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm},$$
$$ {\rm Im}[z_{\rm TP}(t)] = - \sqrt{2}\hspace{0.15cm}\underline {= -1.414} \hspace{0.05cm}.$$


(5)  Richtig sind die Aussagen 1, 3 und 4:

  • Die einzige Diracfunktion von  $Z_+(f)$  liegt bei  $f = f_{\rm T}$  und nicht bei  $–f_{\rm T}$.
  • Das analytische Signal einer harmonischen Schwingung ist immer komplex.
  • Das äquivalente TP–Signal einer harmonischen Schwingung ist meistens komplex.  Ausnahme:
$$z(t) = ±A_{\rm T} · \cos(ω_{\rm T} · t) \ \Rightarrow \ z_{\rm TP}(t) = ±A_{\rm T}.$$