Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.6: k-parameters and alpha-parameters"

From LNTwww
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Kupfer–Doppelader
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs
 
}}
 
}}
  
[[File:P_ID1812__LZI_A_4_6.png|right|frame|Dämpfungsmaß einer 0.5 mm Doppelader mit k– und α-Parameter]]
+
[[File:EN_LZI_A_4_6.png|right|frame|Attenuation function per unit length, <br>valid for&nbsp; "copper twin wire"&nbsp; (0.5 mm)]]
Für symmetrische Kupfer&ndash;Doppeladern findet man in [PW95] die folgende empirische Formel, gültig für den Frequenzbereich 0f30 MHz:
+
For symmetrical copper twisted pairs,&nbsp; the following empirical formula can be found in&nbsp; [PW95],&nbsp; which is valid for the frequency range &nbsp;0f30 MHz:
 
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3} , \hspace{0.15cm}
 
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3} , \hspace{0.15cm}
 
  f_0 = 1\,{\rm MHz} .$$
 
  f_0 = 1\,{\rm MHz} .$$
Dagegen ist das Dämpfungsmaß eines Koaxialkabels meist in der folgenden Form angegeben:
+
In contrast,&nbsp; the attenuation function per unit length of a coaxial cable is usually given in the following form:
 
:αII(f)=α0+α1f+α2f.
 
:αII(f)=α0+α1f+α2f.
Insbesondere zur Berechnung von Impulsantwort und Rechteckantwort ist es von Vorteil, auch für die Kupfer&ndash;Doppeladern die zweite Darstellungsform mit den Kabelparametern α0, α1 und α2 anstelle der Beschreibung durch k1, k2 und k3 zu wählen.  
+
Especially for the calculation of impulse response and rectangular response it is advantageous also for the copper twisted pairs to choose the second representation form with the cable parameters &nbsp;α0, &nbsp;α1&nbsp; and&nbsp; α2&nbsp; instead of the representation with &nbsp;k1, &nbsp;k2&nbsp; and &nbsp;k3.  
  
Für die Umrechnung geht man dabei wie folgt vor:
+
For the conversion,&nbsp; one proceeds as follows:
* Aus obigen Gleichungen ist offensichtlich, dass der die Gleichsignaldämpfung charakterisierende Koeffizient α0=k1 ist.
+
* From above equations,&nbsp; it is obvious that the coefficient characterizing the DC signal attenuation is &nbsp;α0=k1.
* Zur Bestimmung von α1 und α2 wird davon ausgegangen, dass der mittlere quadratische Fehler im Bereich einer vorgegebenen Bandbreite B minimal sein soll:
+
* To determine&nbsp; α1&nbsp; and&nbsp; α2,&nbsp; it is assumed that the mean square error should be minimum in the range of a given bandwidth &nbsp;B:
:$${\rm E}[\varepsilon^2(f)] =  \int_{0}^{
+
:$${\rm E}\big[\varepsilon^2(f)\big] =  \int_{0}^{
 
B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2
 
B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2
 
\hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow
 
\hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}{\rm Minimum}
 
\hspace{0.3cm}{\rm Minimum}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
* Die Differenz ε2(f) und der mittlere quadratische Fehler E[ε2(f)] ergeben sich dabei wie folgt:
+
* The difference &nbsp;ε2(f)&nbsp; and the mean square error &nbsp;${\rm E}\big[\varepsilon^2(f)\big]$&nbsp; are obtained as follows:
:$$\varepsilon^2(f) =  \left [ \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f} - k_2  \cdot (f/f_0)^{k_3}\right ]^2
+
:$$\varepsilon^2(f) =  \big [ \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f} - k_2  \cdot (f/f_0)^{k_3}\big ]^2
 
=\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^2  + 2  \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^{1.5} +
 
=\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^2  + 2  \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^{1.5} +
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f + k_2^2\hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{2k_3}}{f_0^{2k_3}} - 2 k_2 \alpha_1 \hspace{0.05cm}\cdot\hspace{0.05cm}  
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f + k_2^2\hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{2k_3}}{f_0^{2k_3}} - 2 k_2 \alpha_1 \hspace{0.05cm}\cdot\hspace{0.05cm}  
 
\frac{f^{k_3+1}} {f_0^{k_3}}-{2 k_2 \alpha_2} \hspace{0.05cm}\cdot\hspace{0.05cm}  \frac{f^{k_3+0.5}}{f_0^{k_3}}$$
 
\frac{f^{k_3+1}} {f_0^{k_3}}-{2 k_2 \alpha_2} \hspace{0.05cm}\cdot\hspace{0.05cm}  \frac{f^{k_3+0.5}}{f_0^{k_3}}$$
 
:$$\Rightarrow
 
:$$\Rightarrow
\hspace{0.3cm}{\rm E}[\varepsilon^2(f)]  =  \alpha_1^2
+
\hspace{0.3cm}{\rm E}\big[\varepsilon^2(f)\big]  =  \alpha_1^2
 
\hspace{0.05cm}\cdot\hspace{0.05cm}\frac{B^3}{3} + \frac{4}{5} \hspace{0.05cm}\cdot\hspace{0.05cm}\alpha_1 \alpha_2  \hspace{0.05cm}\cdot\hspace{0.05cm}B^{2.5} +
 
\hspace{0.05cm}\cdot\hspace{0.05cm}\frac{B^3}{3} + \frac{4}{5} \hspace{0.05cm}\cdot\hspace{0.05cm}\alpha_1 \alpha_2  \hspace{0.05cm}\cdot\hspace{0.05cm}B^{2.5} +
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^2}{2} + \frac{k_2^2}{2k_3 +1} \hspace{0.05cm}\cdot\hspace{0.05cm}
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^2}{2} + \frac{k_2^2}{2k_3 +1} \hspace{0.05cm}\cdot\hspace{0.05cm}
Line 32: Line 32:
 
\hspace{0.05cm}\cdot\hspace{0.05cm}
 
\hspace{0.05cm}\cdot\hspace{0.05cm}
 
$$
 
$$
:Diese Gleichung beinhaltet die zu verrechnenden Kabelparameter α1, α2, k2 und k3 sowie die Bandbreite B, innerhalb derer die Approximation gültig sein soll.
+
:This equation contains the cable parameters &nbsp;α1, &nbsp;α2, &nbsp;k2&nbsp; and &nbsp;k3&nbsp; to be calculated as well as the bandwidth &nbsp;B,&nbsp; within which the approximation should be valid.
* Durch Nullsetzen der Ableitungen von E[ε2(f)] nach α1 bzw. α2 erhält man zwei Gleichungen für die bestmöglichen Koeffizienten α1 und α2, die den mittleren quadratischen Fehler minimieren. Diese lassen sich in folgender Form darstellen:
+
* By setting the derivatives of &nbsp;${\rm E}\big[\varepsilon^2(f)\big]$&nbsp; to &nbsp;α1&nbsp; and &nbsp;α2&nbsp; to zero, two equations are obtained for the best possible coefficients &nbsp;α1&nbsp; and &nbsp;α2 that minimize the mean square error. These can be represented in the following form:
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}}  = 0 \hspace{0.2cm}  
+
:$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_1}}  = 0 \hspace{0.2cm}  
 
  \Rightarrow  
 
  \Rightarrow  
 
\hspace{0.2cm} \alpha_1 + C_1 \cdot \alpha_2 + C_2  = 0 \hspace{0.05cm}
 
\hspace{0.2cm} \alpha_1 + C_1 \cdot \alpha_2 + C_2  = 0 \hspace{0.05cm}
 
,$$
 
,$$
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}}  =
+
:$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_2}}  =
 
0 \hspace{0.2cm}  
 
0 \hspace{0.2cm}  
 
  \Rightarrow  
 
  \Rightarrow  
 
\hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm}
 
\hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm}
 
. $$
 
. $$
* Aus der Gleichung C1α2+C2=D1α2+D2 lässt sich daraus der Koeffizient α2 berechnen und anschließend aus jeder der beiden oberen Gleichungen der Koeffizient α1.
+
* From the equation &nbsp;C1α2+C2=D1α2+D2,&nbsp; the coefficient &nbsp;α2&nbsp; can be calculated and then the coefficient &nbsp;α1 can be calculated from each of the two equations above.
  
  
Die  Grafik zeigt das Dämpfungsmaß für eine Kupferdoppelader mit 0.5 mm Durchmesser, deren k&ndash;Parameter lauten:
+
The graph shows the attenuation function per unit length for a copper twin wire with&nbsp; $\text{0.5 mm}$&nbsp; diameter, whose&nbsp; k&ndash;parameters are:
 
:$$k_1  = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm}
 
:$$k_1  = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm}
 
  k_2  = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3  = 0.60\hspace{0.05cm}
 
  k_2  = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3  = 0.60\hspace{0.05cm}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Die rote Kurve zeigt die damit berechnete Funktion α(f). Für f=30 MHz ergibt sich das Dämpfungsmaß $\alpha(f) 87.5 \ \rm dB/km$.  
+
*The red curve shows the function &nbsp;α(f)&nbsp; calculated with this parameters.&nbsp; For &nbsp;f=30 MHz&nbsp; the attenuation function per unit length is &nbsp;$\alpha(f)= 87.5 \ \rm dB/km$.  
*Die blaue Kurve gibt die Approximation mit den αndash;Koeffizienten an. Diese ist von der roten Kurve innerhalb der Zeichengenauigkeit fast nicht zu unterscheiden.
+
*The blue curve gives the approximation with the &nbsp;α&ndash;coefficients.&nbsp; This is almost indistinguishable from the red curve within the drawing accuracy.
  
  
Line 58: Line 58:
  
  
''Hinweise:''
+
Notes:  
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Eigenschaften_von_Kupfer–Doppeladern|Eigenschaften von Kupfer–Doppeladern]].
+
*The exercise belongs to the chapter&nbsp;   [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Properties of Balanced Copper Pairs]].
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
*Sie können zur Überprüfung Ihrer Ergebnisse das Interaktionsmodul [[Applets:Dämpfung_von_Kupferkabeln|Dämpfung von Kupferkabeln]] benutzen.
+
*You can use the&nbsp; (German language)&nbsp; interactive SWF applet &nbsp;[[Applets:Dämpfung_von_Kupferkabeln|"Dämpfung von Kupferkabeln"]]&nbsp; &rArr; &nbsp; "Attenuation of copper cables"&nbsp;.
*[PW95] kennzeichnet folgenden Literaturhinweis: 
+
*[PW95]&nbsp; denotes the following literature reference: &nbsp; Pollakowski, P.; Wellhausen, H.-W.:&nbsp; Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz.&nbsp; Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
:Pollakowski, P.; Wellhausen, H.-W.: ''Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz.'' Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Parameter C1 und C2 der Gleichung α1+C1α2+C2=0, die sich aus der Ableitung dE[...]/dα1 ergeben. <br>Welche Ergebnisse sind zutreffend?
+
{Calculate the parameters &nbsp;C1&nbsp; and &nbsp;C2&nbsp; of the equation &nbsp;α1+C1α2+C2=0&nbsp; resulting from the derivative &nbsp;${\rm dE\big[\text{...}\big]/d}\alpha_1$.&nbsp; <br>Which results are correct?
 
|type="[]"}
 
|type="[]"}
 
+ C1=6/5B0.5,
 
+ C1=6/5B0.5,
Line 79: Line 78:
  
  
{Berechnen Sie die Parameter D1 und D2 der Gleichung α1+D1α2+D2=0, die sich aus der Ableitung dE[text...]/dα2 ergeben.<br> Welche Ergebnisse sind zutreffend?
+
{Calculate the parameters &nbsp;D1&nbsp; and &nbsp;D2&nbsp; of the equation &nbsp;α1+D1α2+D2=0&nbsp; resulting from the derivative &nbsp;${\rm dE\big[\text{...}\big]/d}\alpha_2$.&nbsp; <br> Which results are correct?
 
|type="[]"}
 
|type="[]"}
 
- D1=6/5B0.5,
 
- D1=6/5B0.5,
Line 89: Line 88:
  
  
{Berechnen Sie die Koeffizienten α1 und α2 für die vorgegebenen k2 und k3. <br>Welche der folgenden Aussagen sind zutreffend?
+
{Calculate the coefficients &nbsp;α1&nbsp; and &nbsp;α2&nbsp; for the given &nbsp;k2&nbsp; and &nbsp;k3. <br>Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Für k3=1.0 gilt α1=k2/f0 und α2=0.
+
+ For &nbsp;k3=1.0,&nbsp; &nbsp;α1=k2/f0&nbsp; and &nbsp;α2=0.
+ Für k3=0.5 gilt α1=0, und α2=k2/f0.50.
+
+ For &nbsp;k3=0.5,&nbsp; &nbsp;α1=0&nbsp; and &nbsp;α2=k2/f0.50.
  
  
{Ermitteln Sie die Koeffizienten α1 und α2 zahlenmäßig für die Approximationsbandbreite B=30 MHz.
+
{Determine the coefficients &nbsp;α1&nbsp; and &nbsp;α2&nbsp; numerically for the approximation bandwidth &nbsp;B=30 MHz.
 
|type="{}"}
 
|type="{}"}
 
α1 =   { 0.761 3% }  dB/(km  MHz)
 
α1 =   { 0.761 3% }  dB/(km  MHz)
Line 101: Line 100:
  
  
{Berechnen Sie mit den αndash;Parametern das Dämpfungsmaß bei f=30 MHz.
+
{Using the &nbsp;α&ndash;parameters,&nbsp; calculate the attenuation function per unit length for the frequency &nbsp;f=30 MHz.
 
|type="{}"}
 
|type="{}"}
 
αII(f=30 MHz) =  { 88.1 3% }  dB/km
 
αII(f=30 MHz) =  { 88.1 3% }  dB/km
Line 109: Line 108:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Ableitung des angegebenen Erwartungswertes nach α1 ergibt:
+
'''(1)'''&nbsp; <u>Solutions 1 and 6</u>&nbsp; are correct:
$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}}  =
+
*The derivative of the given expected value with respect to&nbsp; α1&nbsp; gives:
 +
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}}  =
 
  \frac{2}{3}\cdot B^3 \cdot \alpha_1 + \frac{4}{5}\cdot B^{2.5} \cdot \alpha_2
 
  \frac{2}{3}\cdot B^3 \cdot \alpha_1 + \frac{4}{5}\cdot B^{2.5} \cdot \alpha_2
 
  - \frac{2 k_2 }{k_3
 
  - \frac{2 k_2 }{k_3
 
+ 2} \cdot \frac{B^{k_3+2}}{f_0^{k_3}}= 0
 
+ 2} \cdot \frac{B^{k_3+2}}{f_0^{k_3}}= 0
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Durch Nullsetzen und Division durch 2B2/3 erhält man daraus:
+
*By setting it to zero and dividing by&nbsp; 2B2/3,&nbsp; we obtain:
$$\alpha_1 + \frac{6}{5}\cdot B^{-0.5} \cdot \alpha_2
+
:$$\alpha_1 + \frac{6}{5}\cdot B^{-0.5} \cdot \alpha_2
 
  - \frac{3 k_2 }{k_3
 
  - \frac{3 k_2 }{k_3
 
+2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0
 
+2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0
\hspace{0.05cm} .$$
+
\hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm} C_1 = \frac{6}{5}\cdot B^{-0.5} \hspace{0.05cm} ,
+
\Rightarrow \hspace{0.3cm} C_1 = \frac{6}{5}\cdot B^{-0.5} \hspace{0.05cm} ,
 
\hspace{0.5cm} C_2 =  
 
\hspace{0.5cm} C_2 =  
 
  - \frac{3 k_2 }{k_3
 
  - \frac{3 k_2 }{k_3
 
+2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}
 
+2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Richtig sind demnach <u>die Lösungsvorschläge 1 und 6</u>.
 
  
  
'''(2)'''&nbsp; Bei gleicher Vorgehensweise wie in der Teilaufgabe (1) zeigt sich, dass nun <u>die Lösungsvorschläge 2 und 5</u> richtig sind:
+
 
$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}}  =
+
'''(2)'''&nbsp; <u>Solutions 2 and 5</u>&nbsp; are correct:
 +
*Using the same procedure as in subtask&nbsp; '''(1)''',&nbsp; we obtain:
 +
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}}  =
 
  \frac{4}{5}\cdot B^{2.5} \cdot \alpha_1 +  B^{2} \cdot \alpha_2
 
  \frac{4}{5}\cdot B^{2.5} \cdot \alpha_1 +  B^{2} \cdot \alpha_2
 
  - \frac{2 k_2 }{k_3
 
  - \frac{2 k_2 }{k_3
 
+ 1.5} \cdot \frac{B^{k_3+1.5}}{f_0^{k_3}}= 0$$
 
+ 1.5} \cdot \frac{B^{k_3+1.5}}{f_0^{k_3}}= 0$$
$$\Rightarrow \hspace{0.3cm} \alpha_1 + \frac{5}{4}\cdot B^{-0.5} \cdot \alpha_2
+
:$$\Rightarrow \hspace{0.3cm} \alpha_1 + \frac{5}{4}\cdot B^{-0.5} \cdot \alpha_2
 
  - \frac{2.5 \cdot k_2 }{k_3
 
  - \frac{2.5 \cdot k_2 }{k_3
 
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0
 
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0
\hspace{0.05cm} .$$
+
\hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm}D_1 = \frac{5}{4}\cdot B^{-0.5} \hspace{0.05cm} ,  
+
\Rightarrow \hspace{0.3cm}D_1 = \frac{5}{4}\cdot B^{-0.5} \hspace{0.05cm} ,  
 
\hspace{0.3cm}D_2 =
 
\hspace{0.3cm}D_2 =
 
  - \frac{2.5 \cdot k_2 }{k_3
 
  - \frac{2.5 \cdot k_2 }{k_3
Line 146: Line 147:
  
  
'''(3)'''&nbsp; Aus C1α2+C2=D1α2+D2 ergibt sich eine lineare Gleichung für α2. Mit dem Ergebnis aus (2) kann hierfür geschrieben werden:
+
 
$$\alpha_2  =  \frac{D_2 - C_2}{C_1 - D_1} = \frac{- \frac{2.5 \cdot k_2 }{k_3
+
'''(3)'''&nbsp; <u>Both solutions</u>&nbsp; are correct:
 +
 
 +
*From&nbsp; C1α2+C2=D1α2+D2&nbsp; we obtain a linear equation for&nbsp; α2.&nbsp; With the result from&nbsp; '''(2)'''&nbsp; we can write:
 +
:$$\alpha_2  =  \frac{D_2 - C_2}{C_1 - D_1} = \frac{- \frac{2.5 \cdot k_2 }{k_3
 
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} + \frac{3 k_2 }{k_3 +2}
 
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} + \frac{3 k_2 }{k_3 +2}
 
\cdot \frac{B^{k_3-1}}{f_0^{k_3}}}{{6}/{5}\cdot B^{-0.5} -
 
\cdot \frac{B^{k_3-1}}{f_0^{k_3}}}{{6}/{5}\cdot B^{-0.5} -
Line 154: Line 158:
 
{5}/{4})(k_3 +1.5)(k_3 +2)} \cdot
 
{5}/{4})(k_3 +1.5)(k_3 +2)} \cdot
 
\frac{B^{k_3-0.5}}{f_0^{k_3}}$$
 
\frac{B^{k_3-0.5}}{f_0^{k_3}}$$
$$  \Rightarrow \hspace{0.3cm}\alpha_2    =  10 \cdot (B/f_0)^{k_3
+
:$$  \Rightarrow \hspace{0.3cm}\alpha_2    =  10 \cdot (B/f_0)^{k_3
 
-0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 +
 
-0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}}
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Für den Parameter α1 gilt dann:
+
*For the parameter &nbsp; α1&nbsp; then holds:
$$\alpha_1  =  - C_1 \cdot \alpha_2 - C_2 = \\ =
+
:$$\alpha_1  =  - C_1 \cdot \alpha_2 - C_2 =   
 
  -\frac{6}{5}\cdot B^{-0.5} \cdot 10 \cdot (B/f_0)^{k_3
 
  -\frac{6}{5}\cdot B^{-0.5} \cdot 10 \cdot (B/f_0)^{k_3
 
-0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 +
 
-0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}} +\frac{3 k_2 }{k_3 +2}
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}} +\frac{3 k_2 }{k_3 +2}
\cdot \frac{B^{k_3-1}}{f_0^{k_3}}= (B/f_0)^{k_3 -1}\cdot
+
\cdot \frac{B^{k_3-1}}{f_0^{k_3}}$$
 +
:$$ \Rightarrow \hspace{0.3cm}\alpha_1  =   (B/f_0)^{k_3 -1}\cdot
 
\frac{-12 \cdot (1-k_3) + 3 \cdot (k_3 + 1.5)}{(k_3 + 1.5)(k_3 +
 
\frac{-12 \cdot (1-k_3) + 3 \cdot (k_3 + 1.5)}{(k_3 + 1.5)(k_3 +
  2)} \cdot \frac {k_2}{f_0}$$
+
  2)} \cdot \frac {k_2}{f_0} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\alpha_1  =15 \cdot (B/f_0)^{k_3
$$ \Rightarrow \hspace{0.3cm}\alpha_1  = 15 \cdot (B/f_0)^{k_3
 
 
-1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 +
 
-1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{f_0}\hspace{0.05cm} .$$
 
  2)}\cdot \frac {k_2}{f_0}\hspace{0.05cm} .$$
Die <u>beiden Lösungsvorschläge</u> sind richtig. Unabhängig von der Bandbreite erhält man für k3=1:
+
$$\alpha_1    =  (B/f_0)^{k_3
+
*Regardless of the bandwidth,&nbsp; we obtain for&nbsp; k3=1:
 +
:$$\alpha_1    =  (B/f_0)^{k_3
 
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{f_0} = \frac{15 \cdot 0.5}{2.5 \cdot 3}\cdot \frac {k_2}{f_0}
 
  2)}\cdot \frac {k_2}{f_0} = \frac{15 \cdot 0.5}{2.5 \cdot 3}\cdot \frac {k_2}{f_0}
 
\hspace{0.15cm}\underline{ = {k_2}/{f_0}}\hspace{0.05cm}
 
\hspace{0.15cm}\underline{ = {k_2}/{f_0}}\hspace{0.05cm}
 
  ,$$
 
  ,$$
$$ \alpha_2  =  (B/f_0)^{k_3
+
:$$ \alpha_2  =  (B/f_0)^{k_3
 
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}}\hspace{0.15cm}\underline{= 0} \hspace{0.05cm}
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}}\hspace{0.15cm}\underline{= 0} \hspace{0.05cm}
 
  .$$
 
  .$$
Dagegen ergibt sich für k3=0.5:
+
*In contrast,&nbsp; for&nbsp; k3=0.5:
$$\alpha_1    =  (B/f_0)^{k_3
+
:$$\alpha_1    =  (B/f_0)^{k_3
 
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{f_0} \hspace{0.15cm}\underline{= 0}\hspace{0.05cm}
 
  2)}\cdot \frac {k_2}{f_0} \hspace{0.15cm}\underline{= 0}\hspace{0.05cm}
 
  ,$$
 
  ,$$
$$ \alpha_2  =  (B/f_0)^{k_3
+
:$$ \alpha_2  =  (B/f_0)^{k_3
 
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}}=  \frac{10 \cdot 0.5}{2 \cdot 2.5}\cdot \frac {k_2}{\sqrt{f_0}} = \hspace{0.15cm}\underline{ {k_2}/{\sqrt{f_0}}} \hspace{0.05cm}
 
  2)}\cdot \frac {k_2}{\sqrt{f_0}}=  \frac{10 \cdot 0.5}{2 \cdot 2.5}\cdot \frac {k_2}{\sqrt{f_0}} = \hspace{0.15cm}\underline{ {k_2}/{\sqrt{f_0}}} \hspace{0.05cm}
Line 190: Line 195:
  
  
'''(4)'''&nbsp; Für die beiden Koeffizienten gilt mit k2=10.8 dB/km, k3=0.6 dB/km und B/f0=30:
+
 
$$\alpha_1    =  (B/f_0)^{k_3
+
'''(4)'''&nbsp; For the two coefficients, with&nbsp; k2=10.8 dB/km,&nbsp; k3=0.6 dB/km&nbsp; and&nbsp; B/f0=30:
 +
:$$\alpha_1    =  (B/f_0)^{k_3
 
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 
  2)}\cdot \frac {k_2}{f_0}  =  30^{-0.4}\cdot \frac{15 \cdot 0.1}{2.1 \cdot 2.6}\cdot
 
  2)}\cdot \frac {k_2}{f_0}  =  30^{-0.4}\cdot \frac{15 \cdot 0.1}{2.1 \cdot 2.6}\cdot
Line 199: Line 205:
 
  \hspace{0.05cm}
 
  \hspace{0.05cm}
 
  ,$$
 
  ,$$
$$ \alpha_2  =  (B/f_0)^{k_3
+
:$$ \alpha_2  =  (B/f_0)^{k_3
 
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
  2)}\cdot \frac {k_2}{\sqrt{f_0}}=  \frac{10 \cdot 0.5}{2 \cdot 2.5}\cdot \frac {k_2}{\sqrt{f_0}} = \frac {k_2}{\sqrt{f_0}}
+
  2)}\cdot \frac {k_2}{\sqrt{f_0}}=  \frac {k_2}{\sqrt{f_0}}
 
  =  30^{0.1}\cdot \frac{10 \cdot 0.4}{2.1 \cdot 2.6}\cdot \frac
 
  =  30^{0.1}\cdot \frac{10 \cdot 0.4}{2.1 \cdot 2.6}\cdot \frac
 
{10.8 \, {\rm dB/km} }{1 \, {\rm MHz^{0.5}}}
 
{10.8 \, {\rm dB/km} }{1 \, {\rm MHz^{0.5}}}
 
\hspace{0.15cm}\underline{ \approx 11.1\,
 
\hspace{0.15cm}\underline{ \approx 11.1\,
{{\rm dB} }/{({\rm km \cdot MHz^{0.5}}})}\hspace{0.05cm}
+
{{\rm dB} }/{({\rm km \cdot \sqrt{MHz}}})}\hspace{0.05cm}
 
  .$$
 
  .$$
  
  
'''(5)'''&nbsp; Entsprechend der angegebenen Gleichung αII(f) gilt:
+
 
$$\alpha_{\rm II}(f = 30 \, {\rm MHz})    =  \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}  
+
'''(5)'''&nbsp; According to the given equation&nbsp; $\alpha_{\rm II}(f)$&nbsp; thus also holds:
   =  \left [ \hspace{0.05cm} 4.4 + 0.761 \cdot 30 +  11.1 \cdot \sqrt {30}\hspace{0.05cm}
+
:$$\alpha_{\rm II}(f = 30 \, {\rm MHz})    =  \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}  
  \right ]\frac
+
   =  \big [ \hspace{0.05cm} 4.4 + 0.761 \cdot 30 +  11.1 \cdot \sqrt {30}\hspace{0.05cm}
 +
  \big ]\frac
 
{\rm dB}{\rm km }
 
{\rm dB}{\rm km }
 
\hspace{0.15cm}\underline{\approx 88.1\, {\rm dB}/{\rm km }}
 
\hspace{0.15cm}\underline{\approx 88.1\, {\rm dB}/{\rm km }}
Line 220: Line 227:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.3 Kupfer–Doppelader^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.3 Balanced Copper Twisted Pair^]]

Latest revision as of 18:11, 23 November 2021

Attenuation function per unit length,
valid for  "copper twin wire"  (0.5 mm)

For symmetrical copper twisted pairs,  the following empirical formula can be found in  [PW95],  which is valid for the frequency range  0f30 MHz:

αI(f)=k1+k2(f/f0)k3,f0=1MHz.

In contrast,  the attenuation function per unit length of a coaxial cable is usually given in the following form:

αII(f)=α0+α1f+α2f.

Especially for the calculation of impulse response and rectangular response it is advantageous also for the copper twisted pairs to choose the second representation form with the cable parameters  α0,  α1  and  α2  instead of the representation with  k1,  k2  and  k3.

For the conversion,  one proceeds as follows:

  • From above equations,  it is obvious that the coefficient characterizing the DC signal attenuation is  α0=k1.
  • To determine  α1  and  α2,  it is assumed that the mean square error should be minimum in the range of a given bandwidth  B:
E[ε2(f)]=B0[αII(f)αI(f)]2dfMinimum.
  • The difference  ε2(f)  and the mean square error  E[ε2(f)]  are obtained as follows:
ε2(f)=[α1f+α2fk2(f/f0)k3]2=α21f2+2α1α2f1.5+α21f+k22f2k3f2k302k2α1fk3+1fk302k2α2fk3+0.5fk30
E[ε2(f)]=α21B33+45α1α2B2.5+α21B22+k222k3+1B2k3+1f2k302k2α1k3+2
This equation contains the cable parameters  α1,  α2,  k2  and  k3  to be calculated as well as the bandwidth  B,  within which the approximation should be valid.
  • By setting the derivatives of  E[ε2(f)]  to  α1  and  α2  to zero, two equations are obtained for the best possible coefficients  α1  and  α2 that minimize the mean square error. These can be represented in the following form:
dE[ε2(f)]dα1=0α1+C1α2+C2=0,
dE[ε2(f)]dα2=0α1+D1α2+D2=0.
  • From the equation  C1α2+C2=D1α2+D2,  the coefficient  α2  can be calculated and then the coefficient  α1 can be calculated from each of the two equations above.


The graph shows the attenuation function per unit length for a copper twin wire with  0.5 mm  diameter, whose  k–parameters are:

k1=4.4dB/km,k2=10.8dB/km,k3=0.60.
  • The red curve shows the function  α(f)  calculated with this parameters.  For  f=30 MHz  the attenuation function per unit length is  α(f)=87.5 dB/km.
  • The blue curve gives the approximation with the  α–coefficients.  This is almost indistinguishable from the red curve within the drawing accuracy.



Notes:

  • You can use the  (German language)  interactive SWF applet  "Dämpfung von Kupferkabeln"  ⇒   "Attenuation of copper cables" .
  • [PW95]  denotes the following literature reference:   Pollakowski, P.; Wellhausen, H.-W.:  Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz.  Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.


Questions

1

Calculate the parameters  C1  and  C2  of the equation  α1+C1α2+C2=0  resulting from the derivative  dE[...]/dα1
Which results are correct?

C1=6/5B0.5,
C1=5/4B0.5,
C1=4/3B2,
C2=4/3B2$,
C2=5/2k2/(k3+1.5)Bk31fk30,
C2=3k2/(k3+2)Bk31fk30.

2

Calculate the parameters  D1  and  D2  of the equation  α1+D1α2+D2=0  resulting from the derivative  dE[...]/dα2
Which results are correct?

D1=6/5B0.5,
D1=5/4B0.5,
D1=4/3B2,
D2=4/3B2,
D2=5/2k2/(k3+1.5)Bk31fk30,
D2=3k2/(k3+2)Bk31fk30.

3

Calculate the coefficients  α1  and  α2  for the given  k2  and  k3.
Which of the following statements are true?

For  k3=1.0,   α1=k2/f0  and  α2=0.
For  k3=0.5,   α1=0  and  α2=k2/f0.50.

4

Determine the coefficients  α1  and  α2  numerically for the approximation bandwidth  B=30 MHz.

α1 = 

 dB/(km  MHz)
α2 = 

 dB/(km  MHz)

5

Using the  α–parameters,  calculate the attenuation function per unit length for the frequency  f=30 MHz.

αII(f=30 MHz) = 

 dB/km


Solution

(1)  Solutions 1 and 6  are correct:

  • The derivative of the given expected value with respect to  α1  gives:
dE[ε2(f)]dα1=23B3α1+45B2.5α22k2k3+2Bk3+2fk30=0.
  • By setting it to zero and dividing by  2B2/3,  we obtain:
α1+65B0.5α23k2k3+2Bk31fk30=0C1=65B0.5,C2=3k2k3+2Bk31fk30.


(2)  Solutions 2 and 5  are correct:

  • Using the same procedure as in subtask  (1),  we obtain:
dE[ε2(f)]dα2=45B2.5α1+B2α22k2k3+1.5Bk3+1.5fk30=0
α1+54B0.5α22.5k2k3+1.5Bk31fk30=0D1=54B0.5,D2=2.5k2k3+1.5Bk31fk30.


(3)  Both solutions  are correct:

  • From  C1α2+C2=D1α2+D2  we obtain a linear equation for  α2.  With the result from  (2)  we can write:
α2=D2C2C1D1=2.5k2k3+1.5Bk31fk30+3k2k3+2Bk31fk306/5B0.55/4B0.5=2.5k2(k3+2)+3k2(k3+1.5)(6/55/4)(k3+1.5)(k3+2)Bk30.5fk30
α2=10(B/f0)k30.51k3(k3+1.5)(k3+2)k2f0.
  • For the parameter   α1  then holds:
α1=C1α2C2=65B0.510(B/f0)k30.51k3(k3+1.5)(k3+2)k2f0+3k2k3+2Bk31fk30
α1=(B/f0)k3112(1k3)+3(k3+1.5)(k3+1.5)(k3+2)k2f0α1=15(B/f0)k31k30.5(k3+1.5)(k3+2)k2f0.
  • Regardless of the bandwidth,  we obtain for  k3=1:
α1=(B/f0)k3115(k30.5)(k3+1.5)(k3+2)k2f0=150.52.53k2f0=k2/f0_,
α2=(B/f0)k30.510(1k3)(k3+1.5)(k3+2)k2f0=0_.
  • In contrast,  for  k3=0.5:
α1=(B/f0)k3115(k30.5)(k3+1.5)(k3+2)k2f0=0_,
α2=(B/f0)k30.510(1k3)(k3+1.5)(k3+2)k2f0=100.522.5k2f0=k2/f0_.


(4)  For the two coefficients, with  k2=10.8 dB/kmk3=0.6 dB/km  and  B/f0=30:

α1=(B/f0)k3115(k30.5)(k3+1.5)(k3+2)k2f0=300.4150.12.12.610.8dB/km1MHz0.761dB/(kmMHz)_,
α2=(B/f0)k30.510(1k3)(k3+1.5)(k3+2)k2f0=k2f0=300.1100.42.12.610.8dB/km1MHz0.511.1dB/(kmMHz)_.


(5)  According to the given equation  αII(f)  thus also holds:

αII(f=30MHz)=α0+α1f+α2f=[4.4+0.76130+11.130]dBkm88.1dB/km_.