Difference between revisions of "Aufgaben:Exercise 2.2Z: Power Consideration"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID991__Mod_Z_2_2.png|right|frame|Analytical signal - line spectrum]]
+
[[File:P_ID991__Mod_Z_2_2.png|right|frame|Analytical signal - Line spectrum]]
 
Let us consider two harmonic oscillations
 
Let us consider two harmonic oscillations
 
:$$ s_1(t)  = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$  
 
:$$ s_1(t)  = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$  
Line 35: Line 35:
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
  
{Let $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?  
+
{Let  $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?  
 
|type="{}"}
 
|type="{}"}
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$

Revision as of 16:29, 29 November 2021

Analytical signal - Line spectrum

Let us consider two harmonic oscillations

$$ s_1(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$
$$s_2(t) = A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$

where  $f_2 ≥ f_1$  should hold for the frequencies.

  • The graphic on the right shows the spectrum of the analytical signal  $s_+(t)$, which is additively composed of the two components  $s_{1+}(t)$  and  $s_ {2+}(t)$ .
  • Here,  the transmission power  $P_{\rm S}$  should be understood as the root mean square value of the signal  $s(t)$,  averaged over the largest measurement period possible:
$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • According to this definition:  If  $s(t)$ describes a voltage waveform,  $P_{\rm S}$  has unit   $\rm V^2$  and refers to resistance  $R = 1 \ \rm Ω$. 
  • Dividing by $R$  gives the physical power in   $\rm W$.



Hints:



Questions

1

Calculate the power of the cosine signal  $s_1(t)$.

$P_1 \ = \ $

$\ \rm V^{ 2 }$

2

Let  $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?

$P_1 \ = \ $

$\ \text{mW}$

3

What is the power of the phase-shifted oscillation  $s_2(t)$?

$P_2 \ = \ $

$\ \rm V^{ 2 }$

4

What is the power of the sum signal  $s(t)$  when  $f_2 ≠ f_1$?

$P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$

5

What power is obtained for $f_2 = f_1$  with  $ϕ = 0$,  $ϕ = 90^\circ$  and  $ϕ = 180^\circ$?

$ϕ = 0\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 90^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 180^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$


Solution

(1)  According to the equations specified on the page:

$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • For more general calculation, we consider the phase  $ϕ_1$ , which is actually zero here.  Using the equation $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$ , we get:
$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$
  • Regardless of the phase  $ϕ_1$ , the second term does not contribute to the division by  $T_{\rm M}$  and subsequent boundary transition due to integration over the cosine function. Thus, we get:
$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$


(2)  With  $R = 50\ \rm Ω$ , we get the "unnormalized" power:

$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$


(3)  It has already been shown in the solution to subtask   (1)  that the phase has no influence on the power. It follows that:

$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$


(4) To calculate power, we must average over $s^{2}(t)$, where:

$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
  • Due to the division by the measurement duration  $T_{\rm M}$  and the required boundary transition, the last term does not contribute regardless of the phase   $ϕ$ .  Thus:
$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$


(5)  When  $f_2 = f_1$ , the spectrum of the analytical signal is:

$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
  • This results in the signal:
$$s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},$$
whose phase  $ϕ_3$  does not matter for the power calculation. The amplitude of this signal is
$$A_3 = \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
  • For  $ϕ = 0$ , the sum of the amplitudes is scalar:
$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • On the other hand, the amplitudes for  $ϕ = 90^\circ$  are added as vectors  ⇒   same result as in subtask  (4):
$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • For  $ϕ = 180^\circ$ , the cosine oscillations overlap destructively:
$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$