Difference between revisions of "Theory of Stochastic Signals/Binomial Distribution"
m (Text replacement - "”" to """) |
|||
Line 1: | Line 1: | ||
{{Header | {{Header | ||
− | |Untermenü= | + | |Untermenü=Dicrete Random Variable |
− | |Vorherige Seite= | + | |Vorherige Seite=Moments of a Discrete Random Variable |
|Nächste Seite=Poissonverteilung | |Nächste Seite=Poissonverteilung | ||
}} | }} | ||
− | == | + | ==General description of the binomial distribution== |
<br> | <br> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
$\text{Definition:}$ | $\text{Definition:}$ | ||
− | + | The '''binomial distribution''' represents an important special case for the occurrence probabilities of a discrete random variable. | |
− | |||
− | |||
− | |||
+ | To derive the binomial distribution, we assume that $I$ binary and statistically independent random variables $b_i$ each can achieve | ||
+ | *the value $1$ with probability ${\rm Pr}(b_i = 1) = p$, and | ||
+ | *the value $0$ with probability ${\rm Pr}(b_i = 0) = 1-p$. | ||
− | |||
− | + | ||
+ | Then the sum $z$ is also a discrete random variable with the symbol set $\{0, \ 1, \ 2,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}, \ I\}$, , which is called binomially distributed: | ||
+ | |||
:$$z=\sum_{i=1}^{I}b_i.$$ | :$$z=\sum_{i=1}^{I}b_i.$$ | ||
− | + | Thus, the symbol size is $M = I + 1.$ }} | |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 1:}$ |
− | + | The binomial distribution finds manifold applications in communications engineering as well as in other disciplines: | |
− | # | + | # It describes the distribution of rejects in statistical quality control. |
− | # | + | # It allows the calculation of the residual error probability in blockwise coding. |
− | # | + | # Also the bit error rate of a digital transmission system obtained by simulation is actually a binomially distributed random quantity. |
+ | Probabilities of the binomial distribution.}} | ||
− | == | + | ==Probabilities of the binomial distribution== |
<br> | <br> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Calculation rule:}$ |
− | + | For the '''probabilities of the binomial distribution''' with $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, \ I$: | |
:$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$ | :$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$ | ||
Der erste Term gibt hierbei die Anzahl der Kombinationen an $($sprich: $I\ \text{ über }\ μ)$: | Der erste Term gibt hierbei die Anzahl der Kombinationen an $($sprich: $I\ \text{ über }\ μ)$: |
Revision as of 21:47, 9 December 2021
Contents
General description of the binomial distribution
$\text{Definition:}$ The binomial distribution represents an important special case for the occurrence probabilities of a discrete random variable.
To derive the binomial distribution, we assume that $I$ binary and statistically independent random variables $b_i$ each can achieve
- the value $1$ with probability ${\rm Pr}(b_i = 1) = p$, and
- the value $0$ with probability ${\rm Pr}(b_i = 0) = 1-p$.
Then the sum $z$ is also a discrete random variable with the symbol set $\{0, \ 1, \ 2,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}, \ I\}$, , which is called binomially distributed:
- $$z=\sum_{i=1}^{I}b_i.$$
Thus, the symbol size is $M = I + 1.$
$\text{Example 1:}$ The binomial distribution finds manifold applications in communications engineering as well as in other disciplines:
- It describes the distribution of rejects in statistical quality control.
- It allows the calculation of the residual error probability in blockwise coding.
- Also the bit error rate of a digital transmission system obtained by simulation is actually a binomially distributed random quantity.
Probabilities of the binomial distribution.
Probabilities of the binomial distribution
$\text{Calculation rule:}$ For the probabilities of the binomial distribution with $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, \ I$:
- $$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
Der erste Term gibt hierbei die Anzahl der Kombinationen an $($sprich: $I\ \text{ über }\ μ)$:
- $${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot 2\cdot \ \cdots \ \cdot \mu}.$$
Weitere Hinweise:
- Für sehr große Werte von $I$ kann die Binomialverteilung durch die im nächsten Abschnitt beschriebene Poissonverteilung angenähert werden.
- Ist gleichzeitig das Produkt $I · p \gg 1$, so geht nach dem Grenzwertsatz von de Moivre-Laplace die Poissonverteilung (und damit auch die Binomialverteilung) in eine diskrete Gaußverteilung über.
$\text{Beispiel 2:}$ Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung sind für $I =6$ und $p =0.4$. Von Null verschieden sind somit $M = I+1=7$ Wahrscheinlichkeiten.
Dagegen ergeben sich für $I = 6$ und $p = 0.5$ die folgenden Binomialwahrscheinlichkeiten:
- $$\begin{align*}{\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}0) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}6)\hspace{-0.05cm} =\hspace{-0.05cm} 1/64\hspace{-0.05cm} = \hspace{-0.05cm}0.015625 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}1) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}5) \hspace{-0.05cm}= \hspace{-0.05cm}6/64 \hspace{-0.05cm}=\hspace{-0.05cm} 0.09375,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}2) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}4)\hspace{-0.05cm} = \hspace{-0.05cm}15/64 \hspace{-0.05cm}= \hspace{-0.05cm}0.234375 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}3) & = 20/64 \hspace{-0.05cm}= \hspace{-0.05cm} 0.3125 .\end{align*}$$
Diese sind symmetrisch bezüglich des Abszissenwertes $\mu = I/2 = 3$.
Ein weiteres Beispiel für die Anwendung der Binomialverteilung ist die Berechnung der Blockfehlerwahrscheinlichkeit bei digitaler Übertragung.
$\text{Beispiel 3:}$ Überträgt man jeweils Blöcke von $I =10$ Binärsymbolen über einen Kanal, der
- mit der Wahrscheinlichkeit $p = 0.01$ ein Symbol verfälscht ⇒ Zufallsgröße $e_i = 1$, und
- entsprechend mit der Wahrscheinlichkeit $1 - p = 0.99$ das Symbol unverfälscht überträgt ⇒ Zufallsgröße $e_i = 0$,
so gilt für die neue Zufallsgröße $f$ ("Fehler pro Block"):
- $$f=\sum_{i=1}^{I}e_i.$$
Diese Zufallsgröße $f$ kann nun alle ganzzahligen Werte zwischen $0$ (kein Symbol verfälscht) und $I$ (alle Symbole falsch) annehmen. Die Wahrscheinlichkeiten für $\mu$ Verfälschungen bezeichnen wir mit $p_μ$.
- Der Fall, dass alle $I$ Symbole richtig übertragen werden, tritt mit der Wahrscheinlichkeit $p_0 = 0.99^{10} ≈ 0.9044$ ein. Dies ergibt sich auch aus der Binomialformel für $μ = 0$ unter Berücksichtigung der Definition $10\, \text{ über }\, 0 = 1$.
- Ein einziger Symbolfehler $(f = 1)$ tritt mit folgender Wahrscheinlichkeit auf:
- $$p_1 = \rm 10\cdot 0.01\cdot 0.99^9\approx 0.0914.$$
- Der erste Faktor berücksichtigt, dass es für die Position eines einzigen Fehlers genau $10\, \text{ über }\, 1 = 10$ Möglichkeiten gibt. Die beiden weiteren Faktoren beücksichtigen, dass ein Symbol verfälscht und neun richtig übertragen werden müssen, wenn $f =1$ gelten soll.
- Für $f =2$ gibt es deutlich mehr Kombinationen, nämlich $10\, \text{ über }\, 2 = 45$, und man erhält
- $$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$
Kann ein Blockcode bis zu zwei Fehler korrigieren, so ist die Restfehlerwahrscheinlichkeit
- $$p_{\rm R} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$
oder
- $$p_{\rm R} = \rm 1-\it p_{\rm 0}-\it p_{\rm 1}-p_{\rm 2}\approx \rm 10^{-4}.$$
- Man erkennt, dass die zweite Berechnungsmöglichkeit über das Komplement für große Werte von $I$ schneller zum Ziel führt.
- Man könnte aber auch als Näherung berücksichtigen, dass bei diesen Zahlenwerten $p_{\rm R} ≈ p_3$ gilt.
Mit dem interaktiven Applet Binomial– und Poissonverteilung können Sie die Binomialwahrscheinlichkeiten für beliebige $I$ und $p$ ermitteln.
Momente der Binomialverteilung
Die Momente kann man mit den Gleichungen der Kapitel Momente einer diskreten Zufallsgröße und Wahrscheinlichkeiten der Binomialverteilung allgemein berechnen.
$\text{Berechnungsvorschriften:} $ Für das Moment $k$-ter Ordnung einer binomialverteilten Zufallsgröße gilt allgemein:
- $$m_k={\rm E}\big[z^k\big]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
Daraus erhält man nach einigen Umformungen für
- den linearen Mittelwert:
- $$m_1 ={\rm E}\big[z\big]= I\cdot p,$$
- den quadratischen Mittelwert:
- $$m_2 ={\rm E}\big[z^2\big]= (I^2-I)\cdot p^2+I\cdot p.$$
Die Varianz und die Streuung erhält man durch Anwendung des "Steinerschen Satzes":
- $$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \sigma = \sqrt{I \cdot p\cdot (1-p)}.$$
Die maximale Varianz $σ^2 = I/4$ ergibt sich für die "charakteristische Wahrscheinlichkeit" $p = 1/2$. In diesem Fall sind die Wahrscheinlichkeiten symmetrisch um den Mittelwert $m_1 = I/2 \ ⇒ \ p_μ = p_{I–μ}$.
Je mehr die charakteristische Wahrscheinlichkeit $p$ vom Wert $1/2$ abweicht,
- um so kleiner ist die Streuung $σ$, und
- um so unsymmetrischer werden die Wahrscheinlichkeiten um den Mittelwert $m_1 = I · p$.
$\text{Beispiel 4:}$ Wir betrachten wie im $\text{Beispiel 3}$ einen Block von $I =10$ Binärsymbolen, die jeweils mit der Wahrscheinlichkeit $p = 0.01$ unabhängig voneinander verfälscht werden. Dann gilt:
- Die mittlere Anzahl von Fehlern pro Block ist gleich $m_f = {\rm E}\big[ f\big] = I · p = 0.1$.
- Die Streuung (Standardabweichung) der Zufallsgröße $f$ beträgt $σ_f = \sqrt{0.1 \cdot 0.99}≈ 0.315$.
Im vollständig gestörten Kanal ⇒ Verfälschungswahrscheinlichkeit $p = 1/2$ ergeben sich demgegenüber die Werte
- $m_f = 5$ ⇒ im Mittel sind fünf der zehn Bit innerhalb eines Blocks falsch,
- $σ_f = \sqrt{I}/2 ≈1.581$ ⇒ maximale Streuung für $I = 10$.
Aufgaben zum Kapitel
Aufgabe 2.3: Summe von Binärzahlen
Aufgabe 2.4: Zahlenlotto (6 aus 49)