Difference between revisions of "Theory of Stochastic Signals/Poisson Distribution"

From LNTwww
Line 8: Line 8:
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''Poisson distribution'''&nbsp; is a limiting case of the&nbsp; [[Theory_of_Stochastic_Signals/Binomial_Distribution#General_description_of_the_binomial_distribution|Binomial distribution]], where.  
+
$\text{Definition:}$&nbsp; The&nbsp; '''Poisson distribution'''&nbsp; is a limiting case of the&nbsp; [[Theory_of_Stochastic_Signals/Binomial_Distribution#General_description_of_the_binomial_distribution|binomial distribution]], where.  
 
*on the one hand, the limit transitions&nbsp; $I → ∞$&nbsp; and&nbsp; $p → 0$&nbsp; are assumed,  
 
*on the one hand, the limit transitions&nbsp; $I → ∞$&nbsp; and&nbsp; $p → 0$&nbsp; are assumed,  
 
*additionally, it is assumed that the product&nbsp; $I · p = λ$&nbsp; has a finite value.  
 
*additionally, it is assumed that the product&nbsp; $I · p = λ$&nbsp; has a finite value.  
Line 22: Line 22:
  
  
{{BlaueBox|TEXT=   
+
{{BlueBox|TEXT=   
$\text{Berechnungsvorschrift:}$&nbsp;
+
$\text{Calculation rule:}$&nbsp;
 
   
 
   
Berücksichtigt man obige Grenzübergänge bei den&nbsp; [[Theory_of_Stochastic_Signals/Binomialverteilung#Wahrscheinlichkeiten_der_Binomialverteilung|Wahrscheinlichkeiten der Binomialverteilung]],&nbsp; so folgt für die&nbsp; '''Wahrscheinlichkeiten der Poissonverteilung''' :  
+
Considering above limit transitions for the&nbsp; [[Theory_of_Stochastic_Signals/Binomial_Distribution#Probabilities_of_the_binomial_distribution|Probabilities of the binomial distribution]],&nbsp; it follows for the&nbsp; '''Probabilities of Poisson Distribution''' :  
:$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu}.$$
+
:$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu}.$$
Daraus erhält man nach einigen algebraischen Umformungen:  
+
From this, after some algebraic transformations, we obtain:  
 
:$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$}}
 
:$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$}}
  
  
[[File: EN_Sto_T_2_4_S1_neu.png |frame| Wahrscheinlichkeiten der Poissonverteilung | rechts]]
+
[[File: EN_Sto_T_2_4_S1_neu.png |frame| Probabilities of the Poisson distribution | right]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Die Wahrscheinlichkeiten
+
$\text{Example 1:}$&nbsp; The probabilities
*der Binomialverteilung mit&nbsp; $I =6$, $p = 0.4$,&nbsp; und  
+
*of the binomial distribution with&nbsp; $I =6$, $p = 0.4$,&nbsp; and  
*der Poissonverteilung mit&nbsp; $λ = 2.4$  
+
*of the Poisson distribution with&nbsp; $λ = 2.4$  
  
  
sind der nebenstehenden Grafik zu entnehmen. Man erkennt:  
+
can be seen in the graph on the right. One can see:  
*Beide Verteilungen besitzen den gleichen Mittelwert&nbsp; $m_1 = 2.4$.  
+
*Both distributions have the same mean&nbsp; $m_1 = 2.4$.  
*Bei der Poissonverteilung&nbsp; (rote Pfeile und Beschriftung)&nbsp; sind die "äußeren Werte" wahrscheinlicher als bei der Binomialverteilung.  
+
*In the Poisson distribution&nbsp; (red arrows and labels)&nbsp; the "outer values" are more probable than in the binomial distribution.  
*Zudem sind bei der Poissonverteilung auch Zufallsgrößen&nbsp; $z > 6$&nbsp; möglich;&nbsp; deren Wahrscheinlichkeiten sind bei der gewählten Rate aber auch eher klein. }}
+
*In addition, random variables&nbsp; $z > 6$&nbsp; are also possible with the Poisson distribution;&nbsp; but their probabilities are also rather small at the chosen rate. }}
 +
 
  
 
==Momente der Poissonverteilung==
 
==Momente der Poissonverteilung==

Revision as of 17:50, 12 December 2021

Probabilities of the Poisson distribution


$\text{Definition:}$  The  Poisson distribution  is a limiting case of the  binomial distribution, where.

  • on the one hand, the limit transitions  $I → ∞$  and  $p → 0$  are assumed,
  • additionally, it is assumed that the product  $I · p = λ$  has a finite value.


The parameter  $λ$  gives the average number of "ones" in a fixed unit of time and is called the  rate .


Further, it should be noted:

  • In contrast to the binomial distribution  $(0 ≤ μ ≤ I)$  here the random quantity can take on arbitrarily large (integer, non-negative) values.
  • This means that the set of possible values here is uncountable.
  • But since no intermediate values can occur, this is also called a  discrete distribution.


$\text{Calculation rule:}$ 

Considering above limit transitions for the  Probabilities of the binomial distribution,  it follows for the  Probabilities of Poisson Distribution :

$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu}.$$

From this, after some algebraic transformations, we obtain:

$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$


Probabilities of the Poisson distribution

$\text{Example 1:}$  The probabilities

  • of the binomial distribution with  $I =6$, $p = 0.4$,  and
  • of the Poisson distribution with  $λ = 2.4$


can be seen in the graph on the right. One can see:

  • Both distributions have the same mean  $m_1 = 2.4$.
  • In the Poisson distribution  (red arrows and labels)  the "outer values" are more probable than in the binomial distribution.
  • In addition, random variables  $z > 6$  are also possible with the Poisson distribution;  but their probabilities are also rather small at the chosen rate.


Momente der Poissonverteilung


$\text{Berechnungsvorschrift:}$ 

Mittelwert und Streuung der Poissonverteilung ergeben sich direkt aus den  entsprechenden Gleichungen der Binomialverteilung  durch zweifache Grenzwertbildung:

$$m_1 =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} I \cdot p= \lambda,$$
$$\sigma =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} \sqrt{I \cdot p \cdot (1-p)} = \sqrt {\lambda}.$$

Daraus ist ersichtlich, dass bei der Poissonverteilung stets  $σ^2 = m_1 = λ$  gilt.


rechts

$\text{Beispiel 2:}$ 

Wie im  $\text{Beispiel 1}$  werden hier miteinander verglichen:

  • die Binomialverteilung mit  $I =6$,  $p = 0.4$,  und
  • und die Poissonverteilung mit  $λ = 2.4$


Man erkennt aus der nebenstehenden Skizze:

  • Beide Verteilungen besitzen genau den gleichen Mittelwert  $m_1 = 2.4$.
  • Bei der Poissonverteilung (im Bild rot markiert) beträgt die Streuung  $σ ≈ 1.55$.
  • Bei der (blauen) Binomialverteilung ist die Standardabweichung dagegen nur  $σ = 1.2$.


Mit dem interaktiven Applet  Binomial– und Poissonverteilung  können Sie die Wahrscheinlichkeiten und Mittelwerte (Momente) der Poissonverteilung für beliebige  $λ$–Werte ermitteln und sich die Gemeinsamkeiten und Unterschiede gegenüber der Binomialverteilung verdeutlichen.


Gegenüberstellung Binomialverteilung vs. Poissonverteilung


Nun sollen sowohl die Gemeinsamkeiten als auch die Unterschiede zwischen binomial– und poissonverteilten Zufallsgrößen nochmals herausgearbeitet werden.

Die  Binomialverteilung  ist zur Beschreibung von solchen stochastischen Ereignissen geeignet, die durch einen vorgegebenen Takt  $T$  gekennzeichnet sind.  Beispielsweise beträgt bei  ISDN  (Integrated Services Digital Network)  mit  $64 \ \rm kbit/s$  die Taktzeit  $T \approx 15.6 \ \rm µ s$.

  • Nur in diesem Zeitraster treten binäre Ereignisse auf.  Solche Ereignisse sind zum Beispiel die fehlerfreie  $(e_i = 0)$  oder fehlerhafte  $(e_i = 1)$  Übertragung einzelner Symbole.
  • Die Binomialverteilung ermöglicht nun statistische Aussagen über die Anzahl der in einem längeren Zeitintervall  $T_{\rm I} = I · T$  zu erwartenden Übertragungsfehler entsprechend dem oberen Diagramm der folgenden Grafik (blau markierte Zeitpunkte).


Schema für Binomialverteilung und Poissonverteilung

Auch die  Poissonverteilung  macht Aussagen über die Anzahl eintretender Binärereignisse in einem endlichen Zeitintervall:

  • Geht man hierbei vom gleichen Betrachtungszeitraum  $T_{\rm I}$  aus und vergrößert die Anzahl  $I$  der Teilintervalle immer mehr, so wird die Taktzeit  $T$, zu der jeweils ein neues Binärereignis  („0” oder „1”)  eintreten kann, immer kleiner.  Im Grenzfall geht  $T$  gegen Null.
  • Das heißt:  Bei der Poissonverteilung sind die binären Ereignisse nicht nur zu diskreten, durch ein Zeitraster vorgegebenen Zeitpunkten möglich, sondern jederzeit.  Das untere Zeitdiagramm verdeutlicht diesen Sachverhalt.
  • Um im Mittel während der Zeit  $T_{\rm I}$  genau so viele „Einsen” wie bei der Binomialverteilung zu erhalten  (im Beispiel:  sechs), muss allerdings die auf das infinitesimal kleine Zeitintervall  $T$  bezogene charakteristische Wahrscheinlichkeit  $p = {\rm Pr}( e_i = 1)$  gegen Null tendieren.


Anwendungen der Poissonverteilung


Die Poissonverteilung ist das Ergebnis eines so genannten  Poissonprozesses.  Ein solcher dient häufig als Modell für Ereignisfolgen, die zu zufälligen Zeitpunkten eintreten können.  Beispiele für derartige Ereignisse sind

  • der Ausfall von Geräten – eine wichtige Aufgabenstellung in der Zuverlässigkeitstheorie,
  • das Schrotrauschen bei der optischen Übertragung, und
  • der Beginn von Telefongesprächen in einer Vermittlungsstelle  („Verkehrstheorie”).


$\text{Beispiel 3:}$  Gehen bei einer Vermittlungsstelle im Langzeitmittel neunzig Vermittlungswünsche pro Minute  $($also  $λ = 1.5 \text{ pro Sekunde})$  ein, so lauten die Wahrscheinlichkeiten  $p_\mu$, dass in einem beliebigen Zeitraum von einer Sekunde genau  $\mu$  Belegungen auftreten:

$$p_\mu = \frac{1.5^\mu}{\mu!}\cdot {\rm e}^{-1.5}.$$

Es ergeben sich die Zahlenwerte  $p_0 = 0.223$,  $p_1 = 0.335$,  $p_2 = 0.251$, usw.

Daraus lassen sich weitere Kenngrößen ableiten:

  • Die Abstand  $τ$  zwischen zwei Vermittlungswünschen genügt der  Exponentialverteilung.
  • Die mittlere Zeitspanne zwischen zwei Vermittlungswünschen beträgt  ${\rm E}[\hspace{0.05cm}τ\hspace{0.05cm}] = 1/λ ≈ 0.667 \ \rm s$.

Aufgaben zum Kapitel


Aufgabe 2.5: „Binomial” oder „Poisson”?

Aufgabe 2.5Z: Blumenwiese