Difference between revisions of "Aufgaben:Exercise 2.9: Symmetrical Distortions"

From LNTwww
m
m
Line 56: Line 56:
 
- No distortion.
 
- No distortion.
 
+ Linear distortions.
 
+ Linear distortions.
- Nonlinear distortions.
+
- Nonlinear distortions.<br>
<br>
 
  
 
</quiz>
 
</quiz>

Revision as of 21:15, 20 December 2021

Transmitter and receiver spectrum in the equivalent low-pass region

The source signal made up of two components

$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$

is amplitude modulated and transmitted through a linearly distorting transmission channel.  The carrier frequency is  $f_{\rm T}$  and the added DC component  $A_{\rm T}$.  Thus, a  Double-sideband amplitude moduluation  $\rm (DSB–AM)$ with carrier  is present.

The upper graph shows the spectrum  $S_{\rm TP}(f)$  of the equivalent low-pass signal in schematic form. This means that the lengths of the Dirac lines drawn do not correspond to the actual values of  $A_{\rm T}$,  $A_1/2$  and  $A_2/2$ .


The spectral function  $R(f)$  of the received signal was measured. In the lower graph we can observe the equivalent low-pass spectrum  $R_{\rm TP}(f)$ calculated from this.

The channel frequency response is characterised with sufficient accuracy with a few auxiliary values:

$$ H_{\rm K}(f = f_{\rm T}) = 0.5,$$
$$H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,$$
$$ H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$





Hints:


Questions

1

Give the amplitudes of the carrier and source signal.

$A_{\rm T} \ = \hspace{0.17cm} $

$\ \rm V$
$A_1 \ = \ $

$\ \rm V$
$A_2 \ = \ $

$\ \rm V$

2

Which kind of distortion would the application of an envelope demodulator in an ideal channel   ⇒   $H_{\rm K}(f) = 1$  lead to?

No distortion.
Linear distortions.
Nonlinear distortions.

3

Calculate the equivalent lowpass signal and answer the following questions. Is it true that...

$r_{\rm TP}(t)$  is always real,
$r_{\rm TP}(t)$  is always greater than or equal to zero,
the phase function  $ϕ(t)$  can take on the values  $0^\circ$  and  $180^\circ$ .

4

Which kind of distortion does the envelope demodulator in the observed transmission channel lead to?

No distortion.
Linear distortions.
Nonlinear distortions.


Solution

(1)  Anhand der Grafiken auf der Angabenseite sind folgende Aussagen möglich:

$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$
$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$


(2)  Richtig ist der Lösungsvorschlag 3:

  • Der Modulationsgrad ergibt sich zu  $m = (A_1 + A_2)/A_T = 1.75$.
  • Damit ergeben sich bei Verwendung eines Hüllkurvendemodulators starke nichtlineare Verzerrungen.
  • Ein Klirrfaktor kann aber nicht angegeben werden, da das Quellensignal zwei Frequenzanteile beinhaltet.



(3)  Richtig sind die Aussagen 1 und 2:

  • Die Fourierrücktransformation von  $R_{\rm TP}(f)$  führt zum Ergebnis:
$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
  • Diese Funktion ist stets reell und nicht–negativ.
  • Damit gilt gleichzeitig  $ϕ(t) = 0$.  Dagegen ist  $ϕ(t) = 180^\circ$  nicht möglich.



(4)  Ein Vergleich der beiden Signale

$$q(t) = 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
$$ v(t) = 0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
zeigt, dass nun lineare Verzerrungen – genauer gesagt Dämpfungsverzerrungen – auftreten   ⇒   Lösungsvorschlag 2.
  • Der Kanal  $H_{\rm K}(f)$  hat hier den positiven Effekt, dass anstelle von irreversiblen nichtlinearen Verzerrungen nun lineare Verzerrungen entstehen, die durch ein nachgeschaltetes Filter eliminiert werden können.
  • Dies ist darauf zurückzuführen, dass durch die stärkere Dämpfung des Quellensignals  $q(t)$  im Vergleich zum Trägersignal  $z(t)$  der Modulationsgrad von  $m = 1.75$  auf  $m = (0.4 · 3 \ \rm V + 0.2 · 4 \ \rm V)/(0.5 · 4 \ \rm V) = 1$  herabgesetzt wird.