Difference between revisions of "Aufgaben:Exercise 2.13: Quadrature Amplitude Modulation"

From LNTwww
m
Line 70: Line 70:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Mit den angegebenen trigonometrischen Umformungen erhält man:
+
'''(1)'''  With the given trigonometric transformations we get:
 
:$$s(t)  =  A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$  
 
:$$s(t)  =  A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$  
 
:$$\Rightarrow  \hspace{0.3cm}s(t)  =  \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) +  
 
:$$\Rightarrow  \hspace{0.3cm}s(t)  =  \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) +  
 
   \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
 
   \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
*Richtig ist demnach der <u>zweite Lösungsvorschlag</u>.
+
*The <u>second answer</u> is correct.
  
  
  
'''(2)'''&nbsp; Mit $A_1 = A_2 = 2 \ \rm V$ und $f_1 = f_2 = 5\ \rm  kHz$ überlagern sich die erste und die dritte Cosinusschwingungen konstruktiv und die beiden anderen heben sich vollständig auf.  
+
'''(2)'''&nbsp; With $A_1 = A_2 = 2 \ \rm V$ and $f_1 = f_2 = 5\ \rm  kHz$, the first and third cosine oscillations constructively overlap and the other two cancel completely.  
*Es ergibt sich somit das folgende einfache Ergebnis:
+
*Thus, the following simple result is obtained:
 
:$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm &micro; s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$
 
:$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm &micro; s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>:
+
'''(3)'''&nbsp; The<u>first answer</u> is correct:
*Bei phasensynchroner Demodulation&nbsp; $(Δϕ_T = 0)$&nbsp; erhält man für die Signale vor den Tiefpässen gemäß der Teilaufgabe&nbsp; '''(2)''':
+
*For phase-synchronous demodulation&nbsp; $(Δϕ_T = 0)$&nbsp;, the signals before the low-pass filters according to subtask&nbsp; '''(2)''' are obtained as:
 
:$$b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
 
:$$b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
 
:$$ b_2(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
 
:$$ b_2(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
*Nach Eliminierung der jeweiligen&nbsp; $45\ \rm  kHz$–Anteile ergibt sich somit&nbsp; $v_1(t) = q_1(t)$&nbsp; und&nbsp; $v_2(t) = q_2(t)$.
+
*Thus, after eliminating the respective &nbsp; $45\ \rm  kHz$ components, we get &nbsp; $v_1(t) = q_1(t)$&nbsp; and&nbsp; $v_2(t) = q_2(t)$.
  
  
  
'''(4)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(3)'''&nbsp; gilt nun:
+
'''(4)'''&nbsp; Analogously to subtask&nbsp; '''(3)'''&nbsp; it now holds that:
 
:$$ b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
:$$ b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
   2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
 
   2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
 
:$$b_2(t)=  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
:$$b_2(t)=  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
   2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
 
   2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
*Die Sinkensignale&nbsp; $v_1(t)$&nbsp; und&nbsp; $v_2(t)$&nbsp; weisen bei dieser Konstellation gegenüber&nbsp; $q_1(t)$&nbsp; und&nbsp; $q_2(t)$&nbsp; Laufzeiten und damit Phasenverzerrungen auf.  
+
*The sink signals&nbsp; $v_1(t)$&nbsp; and&nbsp; $v_2(t)$&nbsp; in this constellation exhibit delays and thus phase distortions compared with &nbsp; $q_1(t)$&nbsp; and&nbsp; $q_2(t)$&nbsp;.  
*Diese gehören zur Klasse der linearen Verzerrungen &nbsp; &rArr; &nbsp; <u>Antwort 2</u>.
+
*These belong to the class of linear distortions &nbsp; &rArr; &nbsp; <u>Answer 2</u>.
  
  
  
'''(5)'''&nbsp; Allgemein gilt für das Empfangssignal:
+
'''(5)'''&nbsp; In general, it holds for the source signal that:
 
:$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
 
:$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Die Multiplikation mit den empfängerseitigen Trägersignalen&nbsp; $z_{1,\hspace{0.05cm}{\rm E}}(t)$&nbsp; und&nbsp; $z_{2,\hspace{0.05cm}{\rm E}}(t)$&nbsp; und Bandbegrenzung führt zu den Signalen
+
Multiplication by the receiver-side carrier signals&nbsp; $z_{1,\hspace{0.05cm}{\rm E}}(t)$&nbsp; and&nbsp; $z_{2,\hspace{0.05cm}{\rm E}}(t)$&nbsp; and band-limiting leads to the signals
 
:$$v_1(t)  =  \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
 
:$$v_1(t)  =  \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
 
:$$ v_2(t)  =  \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$
 
:$$ v_2(t)  =  \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$
Daraus ist zu ersehen:  
+
From this it can be seen:  
*Bei einem Phasenversatz von&nbsp; $Δϕ_{\rm T}  = 30^\circ$&nbsp; beinhaltet das Sinkensignal&nbsp; $v_1(t)$&nbsp; nicht nur das um&nbsp; $\cos(30^\circ) = 0.866$&nbsp; gedämpfte Signal&nbsp; $q_1(t)$, sondern auch die in&nbsp; $q_2(t)$&nbsp; enthaltene Frequenz&nbsp; $f_2$.  
+
*With a phase offset of &nbsp; $Δϕ_{\rm T}  = 30^\circ$&nbsp;, the sink signal&nbsp; $v_1(t)$&nbsp; includes not only the signal &nbsp; $q_1(t)$ attenuated by about &nbsp; $\cos(30^\circ) = 0.866$&nbsp;, but also the frequency &nbsp; $f_2$ contained in &nbsp; $q_2(t)$&nbsp;.
*Diese ist mit dem Faktor&nbsp; $\sin(30^\circ) = 0.5$&nbsp; gewichtet.  
+
*This is weighted by the factor &nbsp; $\sin(30^\circ) = 0.5$&nbsp;.  
*Es liegen somit nichtlineare Verzerrungen vor  &nbsp; &rArr; &nbsp; <u>Antwort 3</u>.
+
*Thus, nonlinear distortions are present &nbsp; &rArr; &nbsp; <u>Answer 3</u>.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 17:25, 23 December 2021

  $\rm QAM$ model under consideration

The quadrature amplitude modulation  $\rm (QAM)$  explained by the diagram allows the transmission of two source signals  $q_1(t)$  and  $q_2(t)$  over the same channel, under certain boundary conditions, which are to be determined in this task.

In this exercise, with  $A_1 = A_2 = 2\ \rm V$, let:

$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$

For  $ω_{\rm T} = 2π · 25\ \rm kHz$, the four carrier signals shown in the diagram are:

$$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$
$$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$
$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$

Both lowpass filters   $\rm TP_1$  and  $\rm TP_2$  with input signals  $b_1(t)$  and  $b_2(t)$ , respectively, remove all frequency components  $|f| > f_{\rm T}$.




Hints:

  • It is worth noting that the carrier signals  $z_2(t)$  and  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  are applied with positive signs here.
  • Often – as in the theory section – these carrier signals are given as "minus-sine".
  • The following trigonometric transformations are given:
$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$


Questions

1

Calculate the transmitted signal  $s(t)$  in the case that  $f_1 ≠ f_2$.  Which of the following statements apply?

$s(t)$  is composed of two cosine and two sine oscillations.
$s(t)$  is composed of four cosine oscillations.
$s(t)$  is composed of four sine oscillations.

2

What is  $s(t)$  when  $f_1 = f_2 = 5 \ \rm kHz$.  What signal value arises for  $t = 50 \ \rm µ s$ ?

$s(t = 50 \ \rm µ s) \ = \ $

$\ \rm V$

3

Calculate the sink signals  $v_1(t)$  and  $v_2(t)$ for  $f_1 = f_2$  and  $Δϕ_{\rm T} = 0$  (no phase offset).  Which statements are true?

  $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$ both hold.
Linear distortions occur.
Nonlinear distortions occur.

4

Calculate the sink signals  $v_1(t)$  and  $v_2(t)$  for  $f_1 = f_2$  and a phase offset  $Δϕ_{\rm T} = 30^\circ$.  Which statements are true?

 $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$ both hold.
Linear distortions occur.
Nonlinear distortions occur.

5

Which of the following statements apply when  $f_1 ≠ f_2$  and  $Δϕ_{\rm T} ≠ 0$  (with an arbitrary phase offset)?

 $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$ both hold.
Linear distortions occur.
Nonlinear distortions occur.


Solution

(1)  With the given trigonometric transformations we get:

$$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$
$$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
  • The second answer is correct.


(2)  With $A_1 = A_2 = 2 \ \rm V$ and $f_1 = f_2 = 5\ \rm kHz$, the first and third cosine oscillations constructively overlap and the other two cancel completely.

  • Thus, the following simple result is obtained:
$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$


(3)  Thefirst answer is correct:

  • For phase-synchronous demodulation  $(Δϕ_T = 0)$ , the signals before the low-pass filters according to subtask  (2) are obtained as:
$$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
$$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
  • Thus, after eliminating the respective   $45\ \rm kHz$ components, we get   $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$.


(4)  Analogously to subtask  (3)  it now holds that:

$$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
$$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
  • The sink signals  $v_1(t)$  and  $v_2(t)$  in this constellation exhibit delays and thus phase distortions compared with   $q_1(t)$  and  $q_2(t)$ .
  • These belong to the class of linear distortions   ⇒   Answer 2.


(5)  In general, it holds for the source signal that:

$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$

Multiplication by the receiver-side carrier signals  $z_{1,\hspace{0.05cm}{\rm E}}(t)$  and  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  and band-limiting leads to the signals

$$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
$$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$

From this it can be seen:

  • With a phase offset of   $Δϕ_{\rm T} = 30^\circ$ , the sink signal  $v_1(t)$  includes not only the signal   $q_1(t)$ attenuated by about   $\cos(30^\circ) = 0.866$ , but also the frequency   $f_2$ contained in   $q_2(t)$ .
  • This is weighted by the factor   $\sin(30^\circ) = 0.5$ .
  • Thus, nonlinear distortions are present   ⇒   Answer 3.