Difference between revisions of "Aufgaben:Exercise 5.10: DMT Process for DSL"

From LNTwww
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/Weitere_OFDM–Anwendungen
+
{{quiz-Header|Buchseite=Modulation_Methods/Further_OFDM_Applications
 
}}
 
}}
  
[[File:P_ID1669__Mod_A_5_10.png|right|frame|Bandbreitenorganisation bei DSL]]
+
[[File:P_ID1669__Mod_A_5_10.png|right|frame|Bandwidth organization for   $\rm DSL$]]
Wir betrachten in dieser Aufgabe ein DSL–System (''Digital Subscriber Line''), das zur Modulation
+
In this exercise we consider a  $\rm DSL$ System  ("Digital Subscriber Line"),  where for modulation
*[[Beispiele_von_Nachrichtensystemen/xDSL_als_Übertragungstechnik#Grundlagen_von_DMT_.E2.80.93_Discrete_Multitone_Transmission|DMT]] (''Discrete Multitone Transmission'')
+
*[[Examples_of_Communication_Systems/xDSL_als_Übertragungstechnik#Grundlagen_von_DMT_.E2.80.93_Discrete_Multitone_Transmission|$\rm DMT$]]  ("Discrete Multitone Transmission")
* mit $N = 512$ Stützstellen
+
* with  $N = 512$  grid points
  
verwendet wird. In diesem Zusammenhang werden die Träger auch als „Bins” bezeichnet. Für DSL ist festgelegt:
 
* Der Trägerabstand sei $f_0 = 4.3125\ \rm  kHz$.
 
* Das Signal ist gleichanteilsfrei: $S(f = 0) = 0$.
 
* Der sogenannte ''Nyquist–Tone'' wird ebenfalls zu Null gesetzt: $S(256 · f_0) = 0$.
 
  
 +
is used.  In this context,  the carriers are also referred to as  "bins".
  
Die Grafik zeigt die Bandbreitenorganisation des betrachteten Systems für positive Frequenzen:  
+
For DSL is specified:
*Ein Übertragungsrahmen der DMT setzt sich wie bei OFDM aus der Kernsymboldauer $T$ und der Dauer $T_{\rm G}$ des zyklischen Präfixes zusammen. Dieses bestehe aus $N_{\rm G} = 32$ Abtastwerten.  
+
* The carrier spacing is  $f_0 = 4.3125\ \rm kHz$.
*Zur Synchronisation zwischen Sender und Empfänger wird nach jeweils 68 Rahmen ein Synchronisationsrahmen gesendet, der keine Nutzdaten enthält.
+
* For the spectrum holds:  $S(f = 0) = 0$.
 +
* The so-called  "Nyquist tone"  is also set to zero:   $S(256 · f_0) = 0$.
  
  
''Hinweise:''
+
The diagram shows the bandwidth organization of the considered system for positive frequencies:
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Weitere_OFDM–Anwendungen|Weitere OFDM–Anwendungen]].
+
*A transmission frame of  $\rm DMT$  is composed of the core symbol duration  $T$  and the duration  $T_{\rm G}$  of the cyclic prefix,  as in OFDM.  This consists of  $N_{\rm G} = 32$  samples.
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Weitere_OFDM–Anwendungen#Eine_Kurzbeschreibung_von_DSL_.E2.80.93_Digital_Subscriber_Line|Eine Kurzbeschreibung von DSL]] sowie [[Modulationsverfahren/Weitere_OFDM–Anwendungen#Unterschiede_zwischen_DMT_und_dem_beschriebenen_OFDM|Unterschiede zwischen DMT und dem beschriebenen OFDM]].
+
*For synchronization between transmitter and receiver,  a synchronization frame is sent after every  $68$  frames,  which does not contain any user data.
* Weitere Informationen zum Thema finden Sie im zweiten Kapitel des LNTwww–Buchs [[Beispiele_von_Nachrichtensystemen]].  
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
  
===Fragebogen===
+
 
 +
Notes:
 +
*The exercise belongs to the chapter  [[Modulation_Methods/Weitere_OFDM–Anwendungen|Further OFDM Applications]].
 +
*Reference is made in particular to the sections    [[Modulation_Methods/Further_OFDM_Applications#A_brief_description_of_DSL_-_Digital_Subscriber_Line|A brief description of DSL]]   and   [[Modulation_Methods/Further_OFDM_Applications#Differences_between_DMT_and_the_described_OFDM|Differences between DMT and the described OFDM]].
 +
* For more information on the topic,  refer to the second chapter:   $\rm DSL$  – "Digital Subscriber Line"  of the LNTwww book  [[Examples_of_Communication_Systems]].
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen ist richtig?
+
{Which of the following statements is correct?
|type="[]"}
+
|type="()"}
- Bei DSL handelt es sich um ein Bandpass–System.
+
- DSL is a bandpass system.
+ DSL wird im Basisband betrieben
+
+ DSL is operated in the baseband.
  
{Welche der folgenden Aussagen trifft auf das DMT–Zeitsignal zu?
+
{Which of the following statements is true about the DMT time signal?
|type="[]"}
+
|type="()"}
+ Das Zeitsignal ist rein reell.
+
+ The time signal is purely real.
- Das Zeitsignal ist rein imaginär.
+
- The time signal is purely imaginary.
- Das Zeitsignal ist komplex.
+
- The time signal is complex.
  
{Wie viele Bins stehen für den Upstream und den Downstream zur Verfügung?
+
{How many bins are available for the upstream and the downstream?
 
|type="{}"}
 
|type="{}"}
$N_{Up}$ = { 32 3% }  
+
$N_{\rm Up} \ = \ $ { 32 }  
$N_{Down}$ = { 192 3% }
+
$N_{\rm Down} \ = \ $ { 192 }
  
{Geben Sie die Dauer T des Kernsymbols an:
+
{Specify the duration &nbsp;$T$&nbsp; of the core symbol.
 
|type="{}"}
 
|type="{}"}
$T$ = { 232 3% } $μs$
+
$T \ = \ $ { 232 3% } $\ \rm &micro; s$
  
{Wie groß ist die Dauer $T_G$ des Guard–Intervalls?
+
{What is the duration &nbsp;$T_{\rm G}$&nbsp; of the guard interval?
 
|type="{}"}
 
|type="{}"}
$T_G$ = { 14 3% } $μs$
+
$T_{\rm G} \ = \ $ { 14 3% } $\ \rm &micro; s$
  
{Welcher Wert ergibt sich somit für die Rahmendauer $T_R$?
+
{What is the value of the frame duration &nbsp;$T_{\rm R}$?
 
|type="{}"}
 
|type="{}"}
$T_R$ = { 246 3% } $μs$
+
$T_{\rm R} \ = \ $  { 246 3% } $\ \rm &micro; s$
  
{Geben Sie die Nutzbitrate des gezeigten Systems für den Downstream an, wenn für alle Träger BPSK verwendet wird:
+
{Specify the useful bit rate of the system shown for the downstream when&nbsp; $\rm BPSK$&nbsp; is used for all carriers.
 
|type="{}"}
 
|type="{}"}
$R_{B,Down}$ = { 768 3$ }
+
$R_\text {B, Down} \ = \ $ { 768 3% } $\ \rm kbit/s$
  
{Die 198–te Stützstelle des (finiten) DMT–Spektrums sei mit 1 + 3 · j belegt. Bestimmen Sie den Wert der 314–ten Stützstelle:
+
{Let the&nbsp; $198$th grid point of the (finite) DMT spectrum be &nbsp;$1 + 3 · {\rm j}$.&nbsp; Determine the (complex) value of the&nbsp; $314$th grid point.
 
|type="{}"}
 
|type="{}"}
$\text{Re{S(314 · $f_0$)}}$ = { 1 3% }
+
$\text{Re}\big[S(314 · f_0)\big] \ = \ $ { 1 3% }
$\text{Im{S(314 · $f_0$)}}$ = { -3 3% }
+
$\text{Im}\big[S(314 · f_0)\big] \ = \ $ { -3.09--2.91 }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Bei DSL handelt es sich um ein Basisbandsystem Lösungsvorschlag 2. Im Unterschied dazu sind Mobilfunksysteme Bandpass–Systeme, die in entsprechend hohen Frequenzbereichen betrieben werden. Um diese ebenfalls in der üblichen Weise betrachten zu können, ist dazu eine Tiefpass–Transformation notwendig.
+
'''(1)'''&nbsp;  <u>Solution 2</u>&nbsp; is correct:
 +
*DSL is a baseband system.
 +
*In contrast,&nbsp; mobile radio systems are bandpass systems which are operated in correspondingly high frequency ranges.
 +
*In order to be able to consider them in the usual way, a (equivalent) lowpass transformation is necessary.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp;   <u>Solution 1</u>&nbsp; is correct:
 +
*The time signal is purely real,&nbsp; since the real part of the spectrum is even and the imaginary part is odd.
 +
*This property is lost in bandpass systems,&nbsp; which must be transformed to the equivalent baseband,&nbsp; by cutting off the negative frequencies.&nbsp; The time signal thus becomes complex.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp;  The corresponding bandwidths for the calculation can be read from the diagram:
 +
:$$N_{{\rm{Up}}}  =  \frac{{276\,\,{\rm kHz}} -{138\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 32},$$
 +
:$$N_{{\rm{Down}}} = \frac{{1104\,\,{\rm kHz}} -{276\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 192}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp;  The core symbol duration is the reciprocal of the basic frequency:
 +
:$$T = \frac{1} {f_0}= \frac{1} {{4.3125\,\,{\rm kHz}}} \hspace{0.15cm}\underline {\approx 232 \,\,{\rm &micro; s}}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp;  From this,&nbsp; the duration of the guard interval is:
 +
:$$T_{\rm G} = \frac{N_{\rm G}} {N} \cdot T = \frac{32} {512} \cdot 232 \,\,{\rm &micro; s} \hspace{0.15cm}\underline {\approx 14 \,\,{\rm &micro; s}}.$$
 +
 
  
'''2.''' Das Zeitsignal ist rein reell, da der Realteil des Spektrums gerade und der Imaginärteil ungerade ist  ⇒  Antwort 1. Diese Eigenschaft geht bei Systemen, die in das äquivalente Basisband transformiert werden müssen, durch das Abschneiden der negativen Frequenzen verloren. Das Zeitsignal wird dadurch komplex.
+
'''(6)'''&nbsp;  A frame is composed of the core symbol and the cyclic prefix:
 +
:$$T_{\rm R} = T + T_{\rm G}\hspace{0.15cm}\underline { ≈ 246 \ \rm &micro;s}.$$
  
'''3.''' Die entsprechenden Bandbreiten für die Rechnung sind aus der Grafik ablesbar:
 
$$N_{{\rm{Up}}}  =  \frac{{276\,\,{\rm kHz}} -{138\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 32},$$
 
$$N_{{\rm{Down}}}  =  \frac{{1104\,\,{\rm kHz}} -{276\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 192}.$$
 
  
'''4.''' Die Kernsymboldauer ist der Kehrwert der Grundfrequenz:
 
$$T = \frac{1} {f_0}= \frac{1} {{4.3125\,\,{\rm kHz}}} \hspace{0.15cm}\underline {\approx 232 \,\,{\rm \mu s}}.$$
 
  
'''5.''' Daraus ergibt sich für die Dauer des Guard–Intervalls:
+
'''(7)'''&nbsp;  With parameters&nbsp; $N_{\rm Down} = 192$,&nbsp; $T_{\rm R} ≈ 246 \ \rm  &micro; s$&nbsp; and&nbsp; $M = 2$,&nbsp; we obtain:
$$T_{\rm G} = \frac{N_{\rm G}} {N} \cdot T = \frac{32} {512} \cdot 232 \,\,{\rm \mu s} \hspace{0.15cm}\underline {\approx 14 \,\,{\rm \mu s}}.$$
+
:$$R_{\rm B,\, Down} = \frac{192 \cdot {{\rm{log}_2}(2)}}{246 \,\,{\rm &micro; s}} \cdot \frac {68}{69}\hspace{0.15cm}\underline {\approx 768 \,\,{\rm kbit/s}}.$$
 +
*It is taken into account here that every&nbsp; $69$th frame is only used for synchronization.
  
'''6.''' Ein Rahmen setzt sich aus Kernsymbol und zyklischem Präfix zusammen. $T_R = T + T_G ≈ 246 μs$.
 
  
'''7.'''  Mit den Parametern $N_{Down} = 192$, $T_R ≈ 246 μs$ und M = 2 erhält man:
 
$$R_{\rm B,\, Down} = \frac{192 \cdot {{\rm{log}_2}(2)}}{246 \,\,{\rm \mu s}} \cdot \frac {68}{69}\hspace{0.15cm}\underline {\approx 768 \,\,{\rm kbit/s}}.$$
 
Hierbei ist berücksichtigt, dass ein jeder 69. Rahmen nur der Synchronisation dient.
 
  
'''8.''' Für das DMT–Spektrum gilt allgemein:
+
'''(8)'''&nbsp;  For the DMT spectrum,&nbsp; in general:
$$S((N - \mu ) \cdot f_0 ) = S^*(\mu \cdot f_0).$$
+
:$$S\big[(N - \mu ) \cdot f_0 \big ] = S^*(\mu \cdot f_0).$$
Mit N = 512 und $S(198 · f_0) = 1 + 3 · j$ gilt somit:
+
*Thus,&nbsp; with&nbsp; $N = 512$&nbsp; and&nbsp; $S(198 · f_0) = 1 + 3 · {\rm j}$&nbsp; holds:
$$S(314 \cdot f_0) \hspace{0.15cm}\underline {= 1 - 3 \cdot {\rm j}}.$$
+
:$$S(314 \cdot f_0) = 1 - 3 \cdot {\rm j}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\text{Re}[S(314 · f_0)]\hspace{0.15cm}\underline {= 1},
 +
\hspace{0.3cm}\text{Im}[S(314 · f_0)]\hspace{0.15cm}\underline {= -3}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 100: Line 126:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.8 Weitere OFDM–Anwendungen^]]
+
[[Category:Modulation Methods: Exercises|^5.8 Further OFDM Applications^]]

Latest revision as of 13:02, 25 January 2022

Bandwidth organization for   $\rm DSL$

In this exercise we consider a  $\rm DSL$ System  ("Digital Subscriber Line"),  where for modulation

  • $\rm DMT$  ("Discrete Multitone Transmission")
  • with  $N = 512$  grid points


is used.  In this context,  the carriers are also referred to as  "bins".

For DSL is specified:

  • The carrier spacing is  $f_0 = 4.3125\ \rm kHz$.
  • For the spectrum holds:  $S(f = 0) = 0$.
  • The so-called  "Nyquist tone"  is also set to zero:   $S(256 · f_0) = 0$.


The diagram shows the bandwidth organization of the considered system for positive frequencies:

  • A transmission frame of  $\rm DMT$  is composed of the core symbol duration  $T$  and the duration  $T_{\rm G}$  of the cyclic prefix,  as in OFDM.  This consists of  $N_{\rm G} = 32$  samples.
  • For synchronization between transmitter and receiver,  a synchronization frame is sent after every  $68$  frames,  which does not contain any user data.



Notes:



Questions

1

Which of the following statements is correct?

DSL is a bandpass system.
DSL is operated in the baseband.

2

Which of the following statements is true about the DMT time signal?

The time signal is purely real.
The time signal is purely imaginary.
The time signal is complex.

3

How many bins are available for the upstream and the downstream?

$N_{\rm Up} \ = \ $

$N_{\rm Down} \ = \ $

4

Specify the duration  $T$  of the core symbol.

$T \ = \ $

$\ \rm µ s$

5

What is the duration  $T_{\rm G}$  of the guard interval?

$T_{\rm G} \ = \ $

$\ \rm µ s$

6

What is the value of the frame duration  $T_{\rm R}$?

$T_{\rm R} \ = \ $

$\ \rm µ s$

7

Specify the useful bit rate of the system shown for the downstream when  $\rm BPSK$  is used for all carriers.

$R_\text {B, Down} \ = \ $

$\ \rm kbit/s$

8

Let the  $198$th grid point of the (finite) DMT spectrum be  $1 + 3 · {\rm j}$.  Determine the (complex) value of the  $314$th grid point.

$\text{Re}\big[S(314 · f_0)\big] \ = \ $

$\text{Im}\big[S(314 · f_0)\big] \ = \ $


Solution

(1)  Solution 2  is correct:

  • DSL is a baseband system.
  • In contrast,  mobile radio systems are bandpass systems which are operated in correspondingly high frequency ranges.
  • In order to be able to consider them in the usual way, a (equivalent) lowpass transformation is necessary.


(2)  Solution 1  is correct:

  • The time signal is purely real,  since the real part of the spectrum is even and the imaginary part is odd.
  • This property is lost in bandpass systems,  which must be transformed to the equivalent baseband,  by cutting off the negative frequencies.  The time signal thus becomes complex.


(3)  The corresponding bandwidths for the calculation can be read from the diagram:

$$N_{{\rm{Up}}} = \frac{{276\,\,{\rm kHz}} -{138\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 32},$$
$$N_{{\rm{Down}}} = \frac{{1104\,\,{\rm kHz}} -{276\,\,{\rm kHz}}} {{4.3125\,\,{\rm kHz}}}\hspace{0.15cm}\underline {= 192}.$$


(4)  The core symbol duration is the reciprocal of the basic frequency:

$$T = \frac{1} {f_0}= \frac{1} {{4.3125\,\,{\rm kHz}}} \hspace{0.15cm}\underline {\approx 232 \,\,{\rm µ s}}.$$


(5)  From this,  the duration of the guard interval is:

$$T_{\rm G} = \frac{N_{\rm G}} {N} \cdot T = \frac{32} {512} \cdot 232 \,\,{\rm µ s} \hspace{0.15cm}\underline {\approx 14 \,\,{\rm µ s}}.$$


(6)  A frame is composed of the core symbol and the cyclic prefix:

$$T_{\rm R} = T + T_{\rm G}\hspace{0.15cm}\underline { ≈ 246 \ \rm µs}.$$


(7)  With parameters  $N_{\rm Down} = 192$,  $T_{\rm R} ≈ 246 \ \rm µ s$  and  $M = 2$,  we obtain:

$$R_{\rm B,\, Down} = \frac{192 \cdot {{\rm{log}_2}(2)}}{246 \,\,{\rm µ s}} \cdot \frac {68}{69}\hspace{0.15cm}\underline {\approx 768 \,\,{\rm kbit/s}}.$$
  • It is taken into account here that every  $69$th frame is only used for synchronization.


(8)  For the DMT spectrum,  in general:

$$S\big[(N - \mu ) \cdot f_0 \big ] = S^*(\mu \cdot f_0).$$
  • Thus,  with  $N = 512$  and  $S(198 · f_0) = 1 + 3 · {\rm j}$  holds:
$$S(314 \cdot f_0) = 1 - 3 \cdot {\rm j}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\text{Re}[S(314 · f_0)]\hspace{0.15cm}\underline {= 1}, \hspace{0.3cm}\text{Im}[S(314 · f_0)]\hspace{0.15cm}\underline {= -3}.$$