Difference between revisions of "Aufgaben:Exercise 3.7: Bit Error Rate (BER)"
Line 4: | Line 4: | ||
[[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]] | [[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]] | ||
− | We consider a binary transmission system with | + | We consider a binary transmission system with |
− | *the source symbol sequence $\langle q_\nu \rangle $ and | + | *the source symbol sequence $\langle q_\nu \rangle $, and |
*the sink symbol sequence $\langle v_\nu \rangle $. | *the sink symbol sequence $\langle v_\nu \rangle $. | ||
− | If sink symbol $v_\nu$ and source symbol $q_\nu$ do not match, there is a bit error ⇒ $e_\nu = 1$. | + | If the sink symbol $v_\nu$ and source symbol $q_\nu$ do not match, there is a "bit error" ⇒ $e_\nu = 1$. Otherwise $e_\nu = 0$ holds. |
− | |||
− | $\rm (A)$ The most important evaluation criterion of such a digital system is | + | $\rm (A)$ The most important evaluation criterion of such a digital system is the '''Bit Error Probability''': |
− | |||
:*With the expected value ${\rm E}\big[\text{ ...} \big]$ this is defined as follows: | :*With the expected value ${\rm E}\big[\text{ ...} \big]$ this is defined as follows: | ||
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$ | :: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$ | ||
− | :*The right part of this equation describes a time averaging; this must always be applied | + | :*The right part of this equation describes a time averaging; this must always be applied to time-varying channels. |
− | :*If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified: | + | :*If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified: |
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$ | ::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$ | ||
+ | :*The bit error probability is an "a priori parameter", so it allows a prediction for the expected result. | ||
− | |||
− | + | $\rm (B)$ For the metrological determination of the transmission quality or for a system simulation, it is necessary to rely on the '''Bit Error Rate''' $\rm (BER)$: | |
− | $\rm (B)$ | ||
− | |||
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$ | ::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$ | ||
Line 34: | Line 30: | ||
:*In the limiting case $N \to \infty$ the relative frequency $h_{\rm B}$ coincides with the probability $p_{\rm B}$ . | :*In the limiting case $N \to \infty$ the relative frequency $h_{\rm B}$ coincides with the probability $p_{\rm B}$ . | ||
:*Here now the question shall be clarified, which statistical uncertainty has to be expected with finite $N$ . | :*Here now the question shall be clarified, which statistical uncertainty has to be expected with finite $N$ . | ||
+ | :it is necessary to rely on the comparable ''A-posteriori parameter'' '''Bit Error Rate''' must be ignored. | ||
Revision as of 16:46, 1 February 2022
We consider a binary transmission system with
- the source symbol sequence $\langle q_\nu \rangle $, and
- the sink symbol sequence $\langle v_\nu \rangle $.
If the sink symbol $v_\nu$ and source symbol $q_\nu$ do not match, there is a "bit error" ⇒ $e_\nu = 1$. Otherwise $e_\nu = 0$ holds.
$\rm (A)$ The most important evaluation criterion of such a digital system is the Bit Error Probability:
- With the expected value ${\rm E}\big[\text{ ...} \big]$ this is defined as follows:
- $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
- The right part of this equation describes a time averaging; this must always be applied to time-varying channels.
- If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified:
- $$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
- The bit error probability is an "a priori parameter", so it allows a prediction for the expected result.
$\rm (B)$ For the metrological determination of the transmission quality or for a system simulation, it is necessary to rely on the Bit Error Rate $\rm (BER)$:
- $$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
- $h_{\rm B}$ is a relative frequency. $n_{\rm B}$ indicates the number of bit errors occurred when a total of $N$ symbols (bits) transmitted.
- In the limiting case $N \to \infty$ the relative frequency $h_{\rm B}$ coincides with the probability $p_{\rm B}$ .
- Here now the question shall be clarified, which statistical uncertainty has to be expected with finite $N$ .
- it is necessary to rely on the comparable A-posteriori parameter Bit Error Rate must be ignored.
Hints:
- The exercise belongs to the chapter Gaussian random variables.
- Read the exercises as far as possible in general.
- Use the parameter values $p_{\rm B} = 10^{-3}$ and $N = 10^{5}$ for control input.
- The following are some values of the so-called Q-function:
- $$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$
Questions
Solution
- Relative to the random variable $n_{\rm B}$ there is the classical case of a binomial distribution.
- The sum over $N$ binary random variables is formed.
- The possible values of $n_{\rm B}$ thus lie between $0$ and $N$.
- The linear mean gives $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$
(2) Für the rms of the binomial distribution holds with good approximation:
- $$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.$$
(3) Possible values of $h_{\rm B}$ are all integer multiples of $1/N$. These all lie between $0$ and $1$.
- For the mean value, one obtains:
- $$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
- The rms results in
- $$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$
(4) Correct is the first proposition. It holds:
- $${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$
- $$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$
- $$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$
(5) One obtains with the numerical values $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:
- $$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$
In words:
- If one determines the bit error rate by simulation over $10^5$ symbols,
- with a confidence level of $\underline{68.4\%}$ one obtains a value between $0.9 \cdot 10^{-3}$ and $1.1 \cdot 10^{-3}$,
- if $p_{\rm B} = 10^{-3}$ is.
(6) From the relation $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$ it follows directly:
- $$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$
(7) It must $\alpha = \varepsilon/\sigma_{h{\rm B}}$ With the result of the subtask (2) then follows:
- $$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$