Difference between revisions of "Aufgaben:Exercise 3.7: Bit Error Rate (BER)"

From LNTwww
m (Text replacement - "rms value" to "standard deviation")
 
(5 intermediate revisions by 3 users not shown)
Line 4: Line 4:
  
 
[[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]]
 
[[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]]
We consider a binary transmission system with.
+
We consider a binary transmission system with
  
*the source symbol sequence  $\langle q_\nu \rangle $  and
+
*the source symbol sequence  $\langle q_\nu \rangle $,  and
 
*the sink symbol sequence  $\langle v_\nu \rangle $.
 
*the sink symbol sequence  $\langle v_\nu \rangle $.
  
  
If sink symbol  $v_\nu$  and source symbol  $q_\nu$  do not match, there is a bit error   ⇒   $e_\nu = 1$.  
+
If the sink symbol  $v_\nu$  and source symbol  $q_\nu$  do not match,  there is a  "bit error"   ⇒   $e_\nu = 1$.  Otherwise  $e_\nu = 0$  holds.
<br>Otherwise&nbsp; $e_\nu = 0$ holds.
 
  
  
$\rm (A)$&nbsp; The most important evaluation criterion of such a digital system is
+
$\rm (A)$&nbsp; The most important evaluation criterion of such a digital system is the&nbsp; '''Bit Error Probability''':
:the&nbsp; '''Bit Error Probability'''&nbsp;.
 
 
:*With the expected value&nbsp; ${\rm E}\big[\text{ ...} \big]$&nbsp; this is defined as follows:
 
:*With the expected value&nbsp; ${\rm E}\big[\text{ ...} \big]$&nbsp; this is defined as follows:
 
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
 
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
  
:*The right part of this equation describes a time averaging;&nbsp;this must always be applied, for example, to time-varying channels.  
+
:*The right part of this equation describes a time averaging;&nbsp;this must always be applied to time-varying channels.  
:*If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified:
+
:*If the error probability is the same for all symbols&nbsp; (which is assumed here),&nbsp; the above equation can be simplified:
 
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
 
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
 +
:*The bit error probability is an&nbsp; "a priori parameter",&nbsp; so it allows a prediction for the expected result.
  
:The bit error probability is an ''a priori parameter'', so it allows a prediction for the expected result.
 
  
 
+
$\rm (B)$&nbsp; For the metrological determination of the transmission quality or for a system simulation,&nbsp; it is necessary to rely on the&nbsp; '''Bit Error Rate'''&nbsp; $\rm (BER)$:
$\rm (B)$&nbsp; On the other hand, for the metrological determination of the transmission quality or for the system simulation, it is necessary to rely on
+
:*The bit error rate is an&nbsp; "a posteriori parameter"&nbsp; derived from a performed statistical experiment as a&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_der_Bitfehlerquote|relative frequency]].  
:the comparable ''A-posteriori parameter''&nbsp; '''Bit Error Rate'''&nbsp; must be ignored.
 
 
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
 
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
 
+
:*$n_{\rm B}$&nbsp; indicates the number of bit errors occurred when a total of&nbsp; $N$&nbsp; binary symbols&nbsp; ("bits")&nbsp; were transmitted.
:*$h_{\rm B}$&nbsp; is a&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_der_Bitfehlerquote|relative frequency]].&nbsp; $n_{\rm B}$&nbsp; indicates the number of bit errors occurred when a total of&nbsp; $N$&nbsp; symbols (bits) transmitted.
+
:*In the limiting case&nbsp; $N \to \infty$&nbsp; the relative frequency&nbsp; $h_{\rm B}$&nbsp; coincides with the probability&nbsp; $p_{\rm B}$.&nbsp; Here now the question shall be clarified,&nbsp; which statistical uncertainty has to be expected with finite&nbsp; $N$.
 
 
:*In the limiting case&nbsp; $N \to \infty$&nbsp; the relative frequency&nbsp; $h_{\rm B}$&nbsp; coincides with the probability&nbsp; $p_{\rm B}$&nbsp;.
 
:*Here now the question shall be clarified, which statistical uncertainty has to be expected with finite&nbsp; $N$&nbsp;.
 
 
 
 
 
 
 
 
 
  
  
Line 44: Line 34:
  
 
Hints:  
 
Hints:  
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian random variables]].
+
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian random variables]].  
+
*Solve this exercise as far as possible in general.&nbsp; Use the parameter values&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$ for control input.  
*Read the exercises as far as possible in general.  
+
*The following are some values of the so-called&nbsp; "Q-function":
*Use the parameter values&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$ for control input.  
 
*The following are some values of the so-called Q-function:
 
 
:$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$  
 
:$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$  
  
Line 65: Line 53:
  
  
{How large; is the rms of the random variable&nbsp; $n_{\rm B}$&nbsp; for&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$?
+
{How large is the standard deviation of the random variable&nbsp; $n_{\rm B}$&nbsp; with&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{n{\rm B}} \ = \ $ { 10 3% }  
 
$\sigma_{n{\rm B}} \ = \ $ { 10 3% }  
  
  
{What values can the bit error rate&nbsp; $h_{\rm B}$&nbsp; take?&nbsp; <br>Show that the linear mean&nbsp; $m_{h{\rm B}}$&nbsp; of this random variable is equal to the actual bit error probability&nbsp; $p_{\rm B}$&nbsp; What is its dispersion?
+
{What values can the bit error rate&nbsp; $h_{\rm B}$&nbsp; take?&nbsp; Show that the linear mean&nbsp; $m_{h{\rm B}}$&nbsp; of this random variable is equal to the bit error probability&nbsp; $p_{\rm B}$&nbsp; What is its standard deviation?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{h{\rm B}} \ = \ $ { 0.0001 3% }  
 
$\sigma_{h{\rm B}} \ = \ $ { 0.0001 3% }  
  
  
{Under certain conditions, a binomially distributed random variable can be approximated by a Gaussian distribution with equal mean&nbsp; $(m_{h{\rm B}})$&nbsp; and equal dispersion&nbsp; $(\sigma_{h{\rm B}})$&nbsp; Which statement is true?
+
{Under certain conditions,&nbsp; a binomially distributed random variable can be approximated by a Gaussian distribution <br>with equal mean&nbsp; $(m_{h{\rm B}})$&nbsp; and equal standard deviation&nbsp; $(\sigma_{h{\rm B}})$.&nbsp; Which statement is true?
 
|type="()"}
 
|type="()"}
 
+ ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$
 
+ ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$
Line 82: Line 70:
  
  
{For abbreviation, we use the confidence level&nbsp; $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$. &nbsp; Which&nbsp; $p_\varepsilon$&nbsp; results with&nbsp; $\varepsilon = 10^{-4}$,&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$&nbsp;?
+
{For abbreviation,&nbsp; we use the confidence level&nbsp; $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$. &nbsp; Which&nbsp; $p_\varepsilon$&nbsp; results with&nbsp; $\varepsilon = 10^{-4}$, &nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$p_\varepsilon \ = \ $ { 0.684 3% }
 
$p_\varepsilon \ = \ $ { 0.684 3% }
  
  
{Let the argument of the Q-function be&nbsp; $\alpha$.&nbsp; What is the minimum &nbsp; $\alpha$&nbsp; that must be chosen for the confidence level&nbsp; $p_\varepsilon = 95\%$&nbsp; to be&nbsp;?
+
{Let the argument of the Q-function be&nbsp; $\alpha$.&nbsp; What is the minimum value of&nbsp; $\alpha$&nbsp; that must be chosen for the confidence level&nbsp; $p_\varepsilon = 95\%$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$\alpha_{\rm min} \ = \ $ { 1.96 3% }
 
$\alpha_{\rm min} \ = \ $ { 1.96 3% }
  
  
{It still holds&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $p_\varepsilon = 95\%$. &nbsp; Over how many symbols&nbsp; $(N_\text{min})$&nbsp; must be averaged at least, <br>so that the determined bit error rate in the range between&nbsp; $0. 9 \cdot 10^{-3}$&nbsp; and&nbsp; $1.1 \cdot 10^{-3}$&nbsp; lies &nbsp; $(\varepsilon = 10^{-4}, \ \text{10% of nominal value)}$&nbsp;?
+
{It still holds&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $p_\varepsilon = 95\%$. &nbsp; Over how many symbols&nbsp; $(N_\text{min})$&nbsp; must be averaged at least, <br>so that the determined bit error rate lies in the range between&nbsp; $0. 9 \cdot 10^{-3}$&nbsp; and&nbsp; $1.1 \cdot 10^{-3}$&nbsp; $(\varepsilon = 10^{-4}, \ \text{10% of its nominal value)}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$N_\text{min} \ = \ ${ 400000 3% }
 
$N_\text{min} \ = \ ${ 400000 3% }
Line 102: Line 90:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The <u>last two statements</u> are true:  
+
'''(1)'''&nbsp; The&nbsp; <u>last two statements</u>&nbsp; are true:  
 
*Relative to the random variable&nbsp; $n_{\rm B}$&nbsp; there is the classical case of a binomial distribution.  
 
*Relative to the random variable&nbsp; $n_{\rm B}$&nbsp; there is the classical case of a binomial distribution.  
*The sum over&nbsp; $N$&nbsp; binary random variables is formed.  
+
*The sum over&nbsp; $N$&nbsp; binary random variables is formed.&nbsp; The possible values of&nbsp; $n_{\rm B}$&nbsp; thus lie between&nbsp; $0$&nbsp; and&nbsp; $N$.  
*The possible values of&nbsp; $n_{\rm B}$&nbsp; thus lie between&nbsp; $0$&nbsp; and&nbsp; $N$.  
 
 
*The linear mean gives &nbsp; $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$
 
*The linear mean gives &nbsp; $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$
  
  
  
'''(2)'''&nbsp; Für the rms of the binomial distribution holds with good approximation:
+
'''(2)'''&nbsp; Für the standard deviation of the binomial distribution holds with good approximation:
 
:$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}
 
:$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}
 
\hspace{0.15cm}\underline{\approx 10}.$$
 
\hspace{0.15cm}\underline{\approx 10}.$$
Line 118: Line 105:
 
'''(3)'''&nbsp; Possible values of&nbsp; $h_{\rm B}$&nbsp; are all integer multiples of&nbsp; $1/N$.&nbsp; These all lie between&nbsp; $0$&nbsp; and&nbsp; $1$.  
 
'''(3)'''&nbsp; Possible values of&nbsp; $h_{\rm B}$&nbsp; are all integer multiples of&nbsp; $1/N$.&nbsp; These all lie between&nbsp; $0$&nbsp; and&nbsp; $1$.  
  
*For the mean value, one obtains:
+
*For the mean value,&nbsp; one obtains:
 
:$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
 
:$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
  
*The scatter results in  
+
*The standard deviation results in  
:$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$
+
:$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$
  
  
'''(4)'''&nbsp; Correct is <u>the first proposition</u>. It holds:
+
'''(4)'''&nbsp; Correct is&nbsp; <u>the first proposition</u>.&nbsp; It holds:
:$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}),$$
+
:$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$
:$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \itvarepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}{\rm )}$$
+
:$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$
:$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}).$$
+
:$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$
  
  
Line 135: Line 122:
 
:$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$
 
:$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$
  
In words:  
+
In words: &nbsp; If one determines the bit error rate by simulation over&nbsp; $10^5$&nbsp; symbols,&nbsp; with a confidence level of&nbsp; $\underline{68.4\%}$&nbsp; <br>one obtains a value between&nbsp; $0.9 \cdot 10^{-3}$&nbsp; and&nbsp; $1.1 \cdot 10^{-3}$,&nbsp; if&nbsp; $p_{\rm B} = 10^{-3}$.
*If one determines the bit error rate by simulation over&nbsp; $10^5$&nbsp; symbols,  
 
*with a confidence level of&nbsp; $\underline{68.4\%}$&nbsp; one obtains a value between&nbsp; $0.9 \cdot 10^{-3}$&nbsp; and&nbsp; $1.1 \cdot 10^{-3}$,  
 
*if&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; is.
 
  
  
Line 147: Line 131:
  
  
'''(7)'''&nbsp; It must&nbsp; $\alpha = \varepsilon/\sigma_{h{\rm B}}$&nbsp; With the result of the subtask&nbsp; '''(2)'''&nbsp; then follows:
+
'''(7)'''&nbsp; It must&nbsp; $\alpha = \varepsilon/\sigma_{h{\rm B}}$.&nbsp; With the result of the subtask&nbsp; '''(2)'''&nbsp; then follows:
 
:$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm}
 
:$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm}
 
N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$
 
N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$

Latest revision as of 12:11, 17 February 2022

To illustrate the bit error rate

We consider a binary transmission system with

  • the source symbol sequence  $\langle q_\nu \rangle $,  and
  • the sink symbol sequence  $\langle v_\nu \rangle $.


If the sink symbol  $v_\nu$  and source symbol  $q_\nu$  do not match,  there is a  "bit error"   ⇒   $e_\nu = 1$.  Otherwise  $e_\nu = 0$  holds.


$\rm (A)$  The most important evaluation criterion of such a digital system is the  Bit Error Probability:

  • With the expected value  ${\rm E}\big[\text{ ...} \big]$  this is defined as follows:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
  • The right part of this equation describes a time averaging; this must always be applied to time-varying channels.
  • If the error probability is the same for all symbols  (which is assumed here),  the above equation can be simplified:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
  • The bit error probability is an  "a priori parameter",  so it allows a prediction for the expected result.


$\rm (B)$  For the metrological determination of the transmission quality or for a system simulation,  it is necessary to rely on the  Bit Error Rate  $\rm (BER)$:

  • The bit error rate is an  "a posteriori parameter"  derived from a performed statistical experiment as a  relative frequency.
$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
  • $n_{\rm B}$  indicates the number of bit errors occurred when a total of  $N$  binary symbols  ("bits")  were transmitted.
  • In the limiting case  $N \to \infty$  the relative frequency  $h_{\rm B}$  coincides with the probability  $p_{\rm B}$.  Here now the question shall be clarified,  which statistical uncertainty has to be expected with finite  $N$.



Hints:

  • The exercise belongs to the chapter  Gaussian random variables.
  • Solve this exercise as far as possible in general.  Use the parameter values  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$ for control input.
  • The following are some values of the so-called  "Q-function":
$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$



Questions

1

Which of the following statements are true?

For  $n_{\rm B}$  all values  $(0$, ... , $N)$  are equally likely.
The random variable  $n_{\rm B}$  is binomially distributed.
With  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$  we get  ${\rm E}\big[n_{\rm B}\big] = 100$.

2

How large is the standard deviation of the random variable  $n_{\rm B}$  with  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$?

$\sigma_{n{\rm B}} \ = \ $

3

What values can the bit error rate  $h_{\rm B}$  take?  Show that the linear mean  $m_{h{\rm B}}$  of this random variable is equal to the bit error probability  $p_{\rm B}$  What is its standard deviation?

$\sigma_{h{\rm B}} \ = \ $

4

Under certain conditions,  a binomially distributed random variable can be approximated by a Gaussian distribution
with equal mean  $(m_{h{\rm B}})$  and equal standard deviation  $(\sigma_{h{\rm B}})$.  Which statement is true?

${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$
${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{\it h}{\rm B}}).$

5

For abbreviation,  we use the confidence level  $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$.   Which  $p_\varepsilon$  results with  $\varepsilon = 10^{-4}$,   $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$ ?

$p_\varepsilon \ = \ $

6

Let the argument of the Q-function be  $\alpha$.  What is the minimum value of  $\alpha$  that must be chosen for the confidence level  $p_\varepsilon = 95\%$ ?

$\alpha_{\rm min} \ = \ $

7

It still holds  $p_{\rm B} = 10^{-3}$  and  $p_\varepsilon = 95\%$.   Over how many symbols  $(N_\text{min})$  must be averaged at least,
so that the determined bit error rate lies in the range between  $0. 9 \cdot 10^{-3}$  and  $1.1 \cdot 10^{-3}$  $(\varepsilon = 10^{-4}, \ \text{10% of its nominal value)}$ ?

$N_\text{min} \ = \ $


Solution

(1)  The  last two statements  are true:

  • Relative to the random variable  $n_{\rm B}$  there is the classical case of a binomial distribution.
  • The sum over  $N$  binary random variables is formed.  The possible values of  $n_{\rm B}$  thus lie between  $0$  and  $N$.
  • The linear mean gives   $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$


(2)  Für the standard deviation of the binomial distribution holds with good approximation:

$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.$$


(3)  Possible values of  $h_{\rm B}$  are all integer multiples of  $1/N$.  These all lie between  $0$  and  $1$.

  • For the mean value,  one obtains:
$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
  • The standard deviation results in
$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$


(4)  Correct is  the first proposition.  It holds:

$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$
$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$
$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$


(5)  One obtains with the numerical values  $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:

$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$

In words:   If one determines the bit error rate by simulation over  $10^5$  symbols,  with a confidence level of  $\underline{68.4\%}$ 
one obtains a value between  $0.9 \cdot 10^{-3}$  and  $1.1 \cdot 10^{-3}$,  if  $p_{\rm B} = 10^{-3}$.


(6)  From the relation  $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$  it follows directly:

$$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$


(7)  It must  $\alpha = \varepsilon/\sigma_{h{\rm B}}$.  With the result of the subtask  (2)  then follows:

$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$