Difference between revisions of "Aufgaben:Exercise 2.9: Coherence Time"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}} Datei:P_ID2180__Mob_A_2_9.png|right|frame|Doppler–Leistungsdichtespektrum un…“)
 
m (Text replacement - "power spectral density" to "power-spectral density")
 
(24 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2180__Mob_A_2_9.png|right|frame|Doppler–Leistungsdichtespektrum und Zeit–Korrelationsfunktion]]
+
[[File:P_ID2180__Mob_A_2_9.png|right|frame|Doppler power-spectral density and correlation function]]
Im Frequenzbereich wird der Einfluss des Rayleigh–Fadings durch das  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading| Jakes–Spektrum]]  beschrieben. Mit dem Rayleigh–Parameter  $\sigma = \sqrt{0.5}$  gilt für dieses im Doppler–Frequenzbereich  $|f_{\rm D}| ≤ f_{\rm D, \ max}$:
+
In the frequency domain, the influence of Rayleigh fading is described by the  [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#ACF_and_PDS_with_Rayleigh.E2.80.93Fading|Jakes spectrum]].  If the Rayleigh parameter is  $\sigma = \sqrt{0.5}$  the Jakes spectrum is
:$${\it \Phi}_{\rm D}(f_{\rm D}) =  \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.05cm}.$$
+
:$${\it \Phi}_{\rm D}(f_{\rm D}) =  \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } $$
 +
in the Doppler frequency range  $(|f_{\rm D}| ≤ f_{\rm D, \ max})$,  and zero otherwise.  This function is sketched for  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blue curve) and  $f_{\rm D, \ max} = 100 \ \rm Hz$  (red curve).
  
Diese Funktion ist für  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blaue Kurve) und  $f_{\rm D, \ max} = 100 \ \rm Hz$  (rote Kurve) skizziert.
+
The correlation function  $\varphi_{\rm Z}(\Delta t)$  is the inverse Fourier transform of the Doppler power-spectral density  ${\it \Phi}_{\rm D}(f)$:
 +
:$$\varphi_{\rm Z}(\Delta t ) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$
 +
 
 +
${\rm J}_0$  denotes the zeroth-order Bessel function of the first kind.  The correlation function  $\varphi_{\rm Z}(\Delta t)$  which is also symmetrical, is drawn below, but for space reasons only the right half.
 +
 
 +
A characteristic value can be derived from each of these two description functions:
 +
* The &nbsp;<b>Doppler spread</b>&nbsp; $B_{\rm D}$&nbsp; refers to the Doppler PDS&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; and is equal to the standard deviation&nbsp; $\sigma_{\rm D}$&nbsp; of the Doppler frequency&nbsp; $f_{\rm D}$.&nbsp;
 +
::Note that the Jakes spectrum is zero-mean, so that the variance&nbsp; $\sigma_{\rm D}^2$&nbsp; according to Steiner's theorem is equal to the second moment&nbsp; ${\rm E}\big[f_{\rm D}^2\big]$.&nbsp; The calculation is analogous to the determination of the delay spread&nbsp; $T_{\rm V}$&nbsp; from the delay PDS&nbsp; ${\it \Phi}_{\rm V}(\tau)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
  
Die Funktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; ist die Fourierrücktransformierte des Doppler&ndash;Leistungsdichtespektrums&nbsp; ${\it \Phi}_{\rm D}(f)$:
+
* The&nbsp; <b>coherence time</b> $T_{\rm D}$&nbsp; refers to the time correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp;.
:$$\varphi_{\rm Z}(\Delta t ) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$
+
:: $T_{\rm D}$&nbsp; is the value of&nbsp; $\Delta t$&nbsp; at which the magnitude&nbsp; $|\varphi_{\rm Z}(\Delta t)|$&nbsp; first drops to half of the maximum&nbsp; $($at&nbsp; $\Delta t = 0)$&nbsp;. One recognizes the analogy with the determination of the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; from the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
  
${\rm J}_0$&nbsp; bezeichnet die <i>Besselfunktion nullter Ordnung</i>. Die ebenfalls symmetrische Korrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; ist unten gezeichnet, aus Platzgründen allerdings nur die rechte Hälfte.
 
  
Aus jeder dieser beiden Beschreibungsfunktionen lässt sich eine Kenngröße ableiten:
 
* Die &nbsp;<b>Dopplerverbreiterung</b>&nbsp; $B_{\rm D}$ bezieht sich auf das Doppler&ndash;LDS&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; und gibt dessen Streuung $\sigma_{\rm D}$ an.
 
::Zu berücksichtigen ist, dass das Jakes&ndash;Spektrum mittelwertfrei ist, so dass die Varianz&nbsp; $\sigma_{\rm D}^2$&nbsp; nach dem Satz von Steiner gleich dem quadratischen Mittelwert&nbsp; ${\rm E}\big[f_{\rm D}^2\big]$&nbsp; ist. Die Berechnung geschieht analog zur Bestimmung der Mehrwegeverbreiterung&nbsp; $T_{\rm V}$&nbsp; aus dem Verzögerungs&ndash;LDS&nbsp; ${\it \Phi}_{\rm V}(\tau)$ &nbsp; &#8658; &nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe 2.7]].
 
  
* Die&nbsp; <b>Korrelationsdauer</b> $T_{\rm D}$&nbsp; bezieht sich dagegen auf die Zeitkorrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp;.
 
:: $T_{\rm D}$&nbsp; gibt denjenigen&nbsp; $\Delta t$&ndash;Wert an, bei dem deren Betrag erstmals auf die Hälfte des Maximums $($bei&nbsp; $\Delta t = 0)$&nbsp; abgefallen ist. Man erkennt die Analogie zur Bestimmung der Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; aus der Frequenz&ndash;Korrelationsfunktion&nbsp; $\varphi_{\rm F}(\Delta f)$ &nbsp; &#8658; &nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe 2.7]].
 
  
  
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabegehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| GWSSUS&ndash;Kanalmodell]].
+
*This exercise belongs to the chapter [[Mobile_Communications/The_GWSSUS_Channel_Model|The GWSSUS Channel Model]].
* Bezug genommen wird auch  auf das Kapitel&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]].
+
* Reference is also made to chapter&nbsp; [[Mobile_Communications/General_Description_of_Time_Variant_Systems| General Description of Time&ndash;Variant Systems]].
* Gegeben ist das folgende unbestimmte Integral:
+
* The following indefinite integral is given:
 
:$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u)
 
:$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Abschließend noch einige Werte für die Besselfunktion nullter Ordnung&nbsp; $({\rm J}_0)$:
+
* We also provide the following few values of the zeroth-order Bessel function of the first kind $({\rm J}_0)$:
 
:$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.4cm} {\rm J}_0(2\pi) = 0.221
 
:$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.4cm} {\rm J}_0(2\pi) = 0.221
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Line 36: Line 38:
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen treffen für die Wahrscheinlichkeitsdichtefunktion (WDF) der Dopplerfrequenz im vorliegenden Beispiel zu?
+
{Which statements apply to the probability density function (PDF) of the Doppler frequency in this example?
 
|type="[]"}
 
|type="[]"}
+ Die Doppler&ndash;WDF ist immer formgleich mit dem Doppler&ndash;LDS.
+
+ The Doppler PDF is always identical in shape to the Doppler PDS.
+ Die Doppler&ndash;WDF ist hier identisch mit dem Doppler&ndash;LDS.
+
+ The Doppler PDF is identical with the Doppler PDS in this example.
- Doppler&ndash;WDF und Doppler&ndash;LDS unterscheiden sich grundsätzlich.
+
- Doppler PDF and Doppler PDS differ fundamentally.
  
{Bestimmen Sie die Dopplerverbreiterungen&nbsp; $B_{\rm D}$.
+
{Determine the Doppler spread $B_{\rm D}$.
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \hspace{0.6cm} B_{\rm D} \ = \ ${ 35.35 3% } $\ \rm Hz$
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} B_{\rm D} \ = \ ${ 35.35 3% } $\ \ \rm Hz$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \hspace{0.4cm} B_{\rm D} \ = \ ${ 70.7 3% } $\ \rm Hz$
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} B_{\rm D} \ = \ ${ 70.7 3% } $\ \ \rm Hz$
  
{Welcher Zeitkorrelationswert ergibt sich für&nbsp; $\Delta t = 5 \ \rm ms$?
+
{What is the time correlation value for&nbsp; $\Delta t = 5 \ \ \rm ms$?
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \hspace{0.6cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ 0.472 3% }
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ 0.472 3% }
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \hspace{0.4cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ -0.31415--0.29585 }
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ -0.31415--0.29585 }
  
{Wie groß sind die Korrelationsdauern&nbsp; $T_{\rm D}$&nbsp; für beide Parametersätze?
+
{What are the coherence times&nbsp; $T_{\rm D}$&nbsp; for both parameter sets?
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \hspace{0.6cm} T_{\rm D} \ = \ ${ 4.84 3% } $\ \rm ms$
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} T_{\rm D} \ = \ ${ 4.84 3% } $\ \ \rm ms$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \hspace{0.4cm} T_{\rm D} \ = \ ${ 2.42 3% } $\ \rm ms$
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} T_{\rm D} \ = \ ${ 2.42 3% } $\ \ \rm ms$
  
{Welcher Zusammenhang besteht zwischen der Dopplerverbreiterung&nbsp; $B_{\rm D}$&nbsp; und der Korrelationsdauer&nbsp; $T_{\rm D}$, ausgehend vom Jakes&ndash;Spektrum?
+
{What is the relationship between the Doppler spread&nbsp; $B_{\rm D}$&nbsp; and the coherence time&nbsp; $T_{\rm D}$, when the Doppler PDS is the Jakes spectrum?
 
|type="()"}
 
|type="()"}
- $B_{\rm D} \cdot T_{\rm D} \approx 1$,
+
- $B_{\rm D} \cdot T_{\rm D} \approx $1,
 
- $B_{\rm D} \cdot T_{\rm D} \approx 0.5$,
 
- $B_{\rm D} \cdot T_{\rm D} \approx 0.5$,
+ $B_{\rm D} \cdot T_{\rm D} \approx 0.171$.
+
+ $B_{\rm D} \cdot T_{\rm D} \approx $0.171.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind hier die <u>Lösungsvorschläge 1 und 2</u>:  
+
'''(1)'''&nbsp; <u>Solutions 1 and 2</u> are correct:  
*Doppler&ndash;WDF und Doppler&ndash;LDS sind im allgemeinen nur formgleich.  
+
*Doppler PDF and Doppler PDS are generally only identical in shape.  
*Da aber im betrachteten Beispiel das Integral über ${\it \Phi}_{\rm D}(f_{\rm D})$ gleich $1$ ist, erkennbar am Korrelationswert $\varphi_{\rm Z}(\Delta t = 0) = 1$, trifft hier sogar die Identität zu.  
+
*But since in the example considered the integral over&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; is equal to&nbsp; $1$ &nbsp; &rArr; &nbsp;this can be easily seen from the correlation value&nbsp; $\varphi_{\rm Z}(\Delta t = 0) = 1$, the Doppler PDF and the Doppler PDS are identical in this example.  
*Bei anderer Wahl des Rayleigh&ndash;Paramters $\sigma$ würde dies allerdings nicht gelten.
+
*If the Rayleigh parameter&nbsp; $\sigma$&nbsp; had been chosen differently, this would not apply.
 +
 
  
  
'''(2)'''&nbsp; Aus der Achsensymmetrie von ${\it \Phi}_{\rm D}(f_{\rm D})$ erkennt man, dass der Mittelwert $m_{\rm D} = {\rm E}\big[f_{\rm D}\big] = 0$ ist.  
+
'''(2)'''&nbsp; From the axial symmetry of&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; you can see that the mean Doppler shift is&nbsp; $m_{\rm D} = {\rm E}\big [f_{\rm D}\big] = 0$.  
*Die Varianz der Zufallsgröße $f_{\rm D}$ kann somit direkt als quadratischer Mittelwert berechnet werden:
+
*The variance of the random variable&nbsp; $f_{\rm D}$&nbsp; can thus be calculated directly as a mean square value:
 
:$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}/{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D}
 
:$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}/{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Unter Ausnutzung der Symmetrie und mit der Substitution $u = f_{\rm D}/f_{\rm D, \ max}$ ergibt sich daraus:
+
*Using symmetry and the substitution&nbsp; $u = f_{\rm D}/f_{\rm D, \ max}$, we obtain
 
:$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u  
 
:$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u  
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
*Mit dem auf der Angabenseite angegebenen Integral erhält man weiter:
+
*With the integral provided in the task description, you get further:
 
:$$\sigma_{\rm D}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \left [ -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \right ]_0^1 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \frac{2}{2}\cdot \frac{\pi}{2} = \frac{f_{\rm D,\hspace{0.05cm}max}^2}{2}  
 
:$$\sigma_{\rm D}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \left [ -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \right ]_0^1 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \frac{2}{2}\cdot \frac{\pi}{2} = \frac{f_{\rm D,\hspace{0.05cm}max}^2}{2}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Die Dopplerverbreiterung ist gleich der Streuung, also der Wurzel aus der Varianz:
+
*The Doppler spread is equal to the standard deviation of&nbsp; $f_{\rm D}$, i.e., the square root of its variance:
 
:$$B_{\rm D} = \sigma_{\rm D}  = \frac{f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline{35.35\,{\rm Hz}}\\
 
:$$B_{\rm D} = \sigma_{\rm D}  = \frac{f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline{35.35\,{\rm Hz}}\\
 
  \underline{70.7\,{\rm Hz}}  \end{array} \right.\quad
 
  \underline{70.7\,{\rm Hz}}  \end{array} \right.\quad
Line 95: Line 98:
  
  
'''(3)'''&nbsp; Mit den angegebenen Besselwerten erhält man
+
 
* für die Dopplerfrequenz&nbsp; $f_{\rm D, \ max} = 50 \ \rm Hz$:
+
'''(3)'''&nbsp; With the Bessel values given, one obtains
 +
* for&nbsp; $f_{\rm D, \ max} = 50 \ \rm Hz$:
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
* für die Dopplerfrequenz&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$:
+
* for&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$:
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Die Korrelationsdauer $T_{\rm D}$ ergibt sich aus der Zeitkorrelationsfunktion $\varphi_{\rm Z}(\Delta t)$. $T_{\rm D}$ ist derjenige $\Delta t$&ndash;Wert, bei dem $|\varphi_{\rm Z}(\Delta t)|$ auf die Hälfte seines Maximalwertes abgeklungen ist. Es muss gelten:
+
'''(4)'''&nbsp; The coherence time&nbsp; $T_{\rm D}$&nbsp; is derived from the correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$.&nbsp; $T_{\rm D}$&nbsp; is the specific value&nbsp; of $\Delta t$&nbsp; where&nbsp; $|\varphi_{\rm Z}(\Delta t)|$&nbsp; has decayed to half of its maximum value.&nbsp; It must hold:
 
:$$\varphi_{\rm Z}(\Delta t = T_{\rm D}) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm}  
 
:$$\varphi_{\rm Z}(\Delta t = T_{\rm D}) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52  
 
\Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52  
Line 110: Line 114:
  
  
'''(5)'''&nbsp; In den Teilaufgaben '''(2)''' und '''(4)''' haben wir erhalten:
+
 
 +
'''(5)'''&nbsp; In the subtasks&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp; we obtained:
 
:$$B_{\rm D} =  \frac{ f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} =  \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm}
 
:$$B_{\rm D} =  \frac{ f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} =  \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} =  \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} =  \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$
  
Richtig ist demnach der <u>letzte Lösungsvorschlag</u>.
+
Therefore, the <u>last option</u> is the correct one.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
 

Latest revision as of 12:41, 17 February 2022

Doppler power-spectral density and correlation function

In the frequency domain, the influence of Rayleigh fading is described by the  Jakes spectrum.  If the Rayleigh parameter is  $\sigma = \sqrt{0.5}$  the Jakes spectrum is

$${\it \Phi}_{\rm D}(f_{\rm D}) = \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } $$

in the Doppler frequency range  $(|f_{\rm D}| ≤ f_{\rm D, \ max})$,  and zero otherwise.  This function is sketched for  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blue curve) and  $f_{\rm D, \ max} = 100 \ \rm Hz$  (red curve).

The correlation function  $\varphi_{\rm Z}(\Delta t)$  is the inverse Fourier transform of the Doppler power-spectral density  ${\it \Phi}_{\rm D}(f)$:

$$\varphi_{\rm Z}(\Delta t ) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$

${\rm J}_0$  denotes the zeroth-order Bessel function of the first kind.  The correlation function  $\varphi_{\rm Z}(\Delta t)$  which is also symmetrical, is drawn below, but for space reasons only the right half.

A characteristic value can be derived from each of these two description functions:

  • The  Doppler spread  $B_{\rm D}$  refers to the Doppler PDS  ${\it \Phi}_{\rm D}(f_{\rm D})$  and is equal to the standard deviation  $\sigma_{\rm D}$  of the Doppler frequency  $f_{\rm D}$. 
Note that the Jakes spectrum is zero-mean, so that the variance  $\sigma_{\rm D}^2$  according to Steiner's theorem is equal to the second moment  ${\rm E}\big[f_{\rm D}^2\big]$.  The calculation is analogous to the determination of the delay spread  $T_{\rm V}$  from the delay PDS  ${\it \Phi}_{\rm V}(\tau)$   ⇒   Exercise 2.7.
  • The  coherence time $T_{\rm D}$  refers to the time correlation function  $\varphi_{\rm Z}(\Delta t)$ .
$T_{\rm D}$  is the value of  $\Delta t$  at which the magnitude  $|\varphi_{\rm Z}(\Delta t)|$  first drops to half of the maximum  $($at  $\Delta t = 0)$ . One recognizes the analogy with the determination of the coherence bandwidth  $B_{\rm K}$  from the frequency correlation function  $\varphi_{\rm F}(\Delta f)$   ⇒   Exercise 2.7.




Notes:

$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \hspace{0.05cm}.$$
  • We also provide the following few values of the zeroth-order Bessel function of the first kind $({\rm J}_0)$:
$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.4cm} {\rm J}_0(2\pi) = 0.221 \hspace{0.05cm}.$$



Questionnaire

1

Which statements apply to the probability density function (PDF) of the Doppler frequency in this example?

The Doppler PDF is always identical in shape to the Doppler PDS.
The Doppler PDF is identical with the Doppler PDS in this example.
Doppler PDF and Doppler PDS differ fundamentally.

2

Determine the Doppler spread $B_{\rm D}$.

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} B_{\rm D} \ = \ $

$\ \ \rm Hz$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} B_{\rm D} \ = \ $

$\ \ \rm Hz$

3

What is the time correlation value for  $\Delta t = 5 \ \ \rm ms$?

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ $

$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ $

4

What are the coherence times  $T_{\rm D}$  for both parameter sets?

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} T_{\rm D} \ = \ $

$\ \ \rm ms$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} T_{\rm D} \ = \ $

$\ \ \rm ms$

5

What is the relationship between the Doppler spread  $B_{\rm D}$  and the coherence time  $T_{\rm D}$, when the Doppler PDS is the Jakes spectrum?

$B_{\rm D} \cdot T_{\rm D} \approx $1,
$B_{\rm D} \cdot T_{\rm D} \approx 0.5$,
$B_{\rm D} \cdot T_{\rm D} \approx $0.171.


Solution

(1)  Solutions 1 and 2 are correct:

  • Doppler PDF and Doppler PDS are generally only identical in shape.
  • But since in the example considered the integral over  ${\it \Phi}_{\rm D}(f_{\rm D})$  is equal to  $1$   ⇒  this can be easily seen from the correlation value  $\varphi_{\rm Z}(\Delta t = 0) = 1$, the Doppler PDF and the Doppler PDS are identical in this example.
  • If the Rayleigh parameter  $\sigma$  had been chosen differently, this would not apply.


(2)  From the axial symmetry of  ${\it \Phi}_{\rm D}(f_{\rm D})$  you can see that the mean Doppler shift is  $m_{\rm D} = {\rm E}\big [f_{\rm D}\big] = 0$.

  • The variance of the random variable  $f_{\rm D}$  can thus be calculated directly as a mean square value:
$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}/{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D} \hspace{0.05cm}.$$
  • Using symmetry and the substitution  $u = f_{\rm D}/f_{\rm D, \ max}$, we obtain
$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u \hspace{0.05cm}. $$
  • With the integral provided in the task description, you get further:
$$\sigma_{\rm D}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \left [ -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \right ]_0^1 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \frac{2}{2}\cdot \frac{\pi}{2} = \frac{f_{\rm D,\hspace{0.05cm}max}^2}{2} \hspace{0.05cm}.$$
  • The Doppler spread is equal to the standard deviation of  $f_{\rm D}$, i.e., the square root of its variance:
$$B_{\rm D} = \sigma_{\rm D} = \frac{f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline{35.35\,{\rm Hz}}\\ \underline{70.7\,{\rm Hz}} \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz} \\ {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz} \\ \end{array} \hspace{0.05cm}. $$


(3)  With the Bessel values given, one obtains

  • for  $f_{\rm D, \ max} = 50 \ \rm Hz$:
$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) = {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
  • for  $f_{\rm D, \ max} = 100 \ \rm Hz$:
$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) = {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$


(4)  The coherence time  $T_{\rm D}$  is derived from the correlation function  $\varphi_{\rm Z}(\Delta t)$.  $T_{\rm D}$  is the specific value  of $\Delta t$  where  $|\varphi_{\rm Z}(\Delta t)|$  has decayed to half of its maximum value.  It must hold:

$$\varphi_{\rm Z}(\Delta t = T_{\rm D}) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}} = \frac{0.242}{ f_{\rm D,\hspace{0.05cm}max}}$$
$$\Rightarrow \hspace{0.3cm} f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\text{:} \ \hspace{-0.1cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 4.84\,{\rm ms}} \hspace{0.05cm},\hspace{0.8cm} f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\text{:} \ \hspace{-0.1cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 2.42\,{\rm ms}} \hspace{0.05cm}. $$


(5)  In the subtasks  (2)  and  (4)  we obtained:

$$B_{\rm D} = \frac{ f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} = \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$

Therefore, the last option is the correct one.