Difference between revisions of "Aufgaben:Exercise 2.9: Coherence Time"

From LNTwww
m (Text replacement - "power spectral density" to "power-spectral density")
 
(19 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2180__Mob_A_2_9.png|right|frame|Doppler–Leistungsdichtespektrum und Zeit–Korrelationsfunktion]]
+
[[File:P_ID2180__Mob_A_2_9.png|right|frame|Doppler power-spectral density and correlation function]]
In the frequency domain, the influence of Rayleigh fading is described by the  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading| Jakes spectrum]] . If the Rayleigh parameter is  $\sigma = \sqrt{0.5}$  the Jakes spectrum is  
+
In the frequency domain, the influence of Rayleigh fading is described by the  [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#ACF_and_PDS_with_Rayleigh.E2.80.93Fading|Jakes spectrum]].  If the Rayleigh parameter is  $\sigma = \sqrt{0.5}$  the Jakes spectrum is  
:$${\it \Phi}_{\rm D}(f_{\rm D}) =  \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.05cm}.$$
+
:$${\it \Phi}_{\rm D}(f_{\rm D}) =  \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } $$
in the Doppler frequency range  ($|f_{\rm D}| ≤ f_{\rm D, \ max}$), and $0$ otherwise.
+
in the Doppler frequency range  $(|f_{\rm D}| ≤ f_{\rm D, \ max})$,  and zero otherwise.  This function is sketched for  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blue curve) and  $f_{\rm D, \ max} = 100 \ \rm Hz$  (red curve).
  
This function is sketched for  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blue curve) and  $f_{\rm D, \ max} = 100 \ \rm Hz$  (red curve).
+
The correlation function  $\varphi_{\rm Z}(\Delta t)$  is the inverse Fourier transform of the Doppler power-spectral density  ${\it \Phi}_{\rm D}(f)$:
 
 
The correlation function  $\varphi_{\rm Z}(\Delta t)$  is the inverse Fourier transform of the Doppler power density spectrum  ${\it \Phi}_{\rm D}(f)$:
 
 
:$$\varphi_{\rm Z}(\Delta t ) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$
 
:$$\varphi_{\rm Z}(\Delta t ) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$
  
${\rm J}_0$&nbsp; denotes the <i>zeroth-order Bessel function of the first kind</i>. The correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; which is also symmetrical, is drawn below, but for space reasons only the right half.
+
${\rm J}_0$&nbsp; denotes the zeroth-order Bessel function of the first kind.&nbsp; The correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; which is also symmetrical, is drawn below, but for space reasons only the right half.
  
 
A characteristic value can be derived from each of these two description functions:
 
A characteristic value can be derived from each of these two description functions:
* The &nbsp;<b>Doppler spread</b>&nbsp; $B_{\rm D}$ refers to the Doppler PSD&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; and is equal to the standard deviation $\sigma_{\rm D}$ of the Doppler frequency $f_D$.  
+
* The &nbsp;<b>Doppler spread</b>&nbsp; $B_{\rm D}$&nbsp; refers to the Doppler PDS&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; and is equal to the standard deviation&nbsp; $\sigma_{\rm D}$&nbsp; of the Doppler frequency&nbsp; $f_{\rm D}$.&nbsp;
Note that the Jakes spectrum is zero-mean, so that the variance&nbsp; $\sigma_{\rm D}^2$&nbsp; according to Steiner's theorem is equal to the second moment&nbsp; ${\rm E}\big[f_{\rm D}^2\big]$&nbsp;. The calculation is analogous to the determination of the delay spread&nbsp; $T_{\rm V}$&nbsp; from the delay PSD&nbsp; ${\it \Phi}_{\rm V}(\tau)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
+
::Note that the Jakes spectrum is zero-mean, so that the variance&nbsp; $\sigma_{\rm D}^2$&nbsp; according to Steiner's theorem is equal to the second moment&nbsp; ${\rm E}\big[f_{\rm D}^2\big]$.&nbsp; The calculation is analogous to the determination of the delay spread&nbsp; $T_{\rm V}$&nbsp; from the delay PDS&nbsp; ${\it \Phi}_{\rm V}(\tau)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
 +
 
 +
* The&nbsp; <b>coherence time</b> $T_{\rm D}$&nbsp; refers to the time correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp;.
 +
:: $T_{\rm D}$&nbsp; is the value of&nbsp; $\Delta t$&nbsp; at which the magnitude&nbsp; $|\varphi_{\rm Z}(\Delta t)|$&nbsp; first drops to half of the maximum&nbsp; $($at&nbsp; $\Delta t = 0)$&nbsp;. One recognizes the analogy with the determination of the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; from the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
 +
 
 +
 
  
* The&nbsp; <b>coherence time</b> $T_{\rm D}$&nbsp; on the other hand, refers to the time correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp;.
 
:: $T_{\rm D}$&nbsp; is the value of &nbsp; $\Delta t$&ndash; at which the magnitude $|\varphi_{\rm Z}(\Delta t)|$ first drops to half of the maximum $($at&nbsp; $\Delta t = 0)$&nbsp;. One recognizes the analogy with the determination of the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; from the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
 
  
  
Line 25: Line 26:
  
 
''Notes:''
 
''Notes:''
* This task belongs to chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| GWSSUS&ndash;Kanalmodell]].
+
*This exercise belongs to the chapter [[Mobile_Communications/The_GWSSUS_Channel_Model|The GWSSUS Channel Model]].
* Reference is also made to chapter&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]].
+
* Reference is also made to chapter&nbsp; [[Mobile_Communications/General_Description_of_Time_Variant_Systems| General Description of Time&ndash;Variant Systems]].
* The following undefined integral is given:
+
* The following indefinite integral is given:
 
:$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u)
 
:$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Abschließend noch einige Werte für die Besselfunktion nullter Ordnung&nbsp; $({\rm J}_0)$:
+
* We also provide the following few values of the zeroth-order Bessel function of the first kind $({\rm J}_0)$:
 
:$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.4cm} {\rm J}_0(2\pi) = 0.221
 
:$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.4cm} {\rm J}_0(2\pi) = 0.221
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Line 41: Line 42:
 
{Which statements apply to the probability density function (PDF) of the Doppler frequency in this example?
 
{Which statements apply to the probability density function (PDF) of the Doppler frequency in this example?
 
|type="[]"}
 
|type="[]"}
+ The Doppler PDF is always identical in shape to the Doppler&ndash;PSD.
+
+ The Doppler PDF is always identical in shape to the Doppler PDS.
+ The Doppler PDF is here identical with the Doppler&ndash;LDS.
+
+ The Doppler PDF is identical with the Doppler PDS in this example.
- Doppler&ndash;PDF and Doppler&ndash;PSD differ fundamentally.
+
- Doppler PDF and Doppler PDS differ fundamentally.
  
{Determine the Doppler spread&nbsp; $B_{\rm D}$.
+
{Determine the Doppler spread $B_{\rm D}$.
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} B_{\rm D} \ = \ ${ 35.35 3% } $\ \ \rm Hz$
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} B_{\rm D} \ = \ ${ 35.35 3% } $\ \ \rm Hz$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} B_{\rm D} \ = \ ${ 70.7 3% } $\ \ \rm Hz$
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} B_{\rm D} \ = \ ${ 70.7 3% } $\ \ \rm Hz$
  
 
{What is the time correlation value for&nbsp; $\Delta t = 5 \ \ \rm ms$?
 
{What is the time correlation value for&nbsp; $\Delta t = 5 \ \ \rm ms$?
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} \varphi_{\rm Z}(\delta t = 5 \ \rm ms) \ = \ ${ 0.472 3% }
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ 0.472 3% }
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} \varphi_{\rm Z}(\delta t = 5 \ \rm ms) \ = \ ${ -0.31415--0.29585 }
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ -0.31415--0.29585 }
  
 
{What are the coherence times&nbsp; $T_{\rm D}$&nbsp; for both parameter sets?
 
{What are the coherence times&nbsp; $T_{\rm D}$&nbsp; for both parameter sets?
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} T_{\rm D} \ = \ ${ 4.84 3% } $\ \ \rm ms$
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} T_{\rm D} \ = \ ${ 4.84 3% } $\ \ \rm ms$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} T_{\rm D} \ = \ ${ 2.42 3% } $\ \ \rm ms$
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} T_{\rm D} \ = \ ${ 2.42 3% } $\ \ \rm ms$
  
{What is the relationship between the Doppler spread&nbsp; $B_{\rm D}$&nbsp; and the coherence time&nbsp; $T_{\rm D}$, when the Doppler PSD is the Jakes spectrum?
+
{What is the relationship between the Doppler spread&nbsp; $B_{\rm D}$&nbsp; and the coherence time&nbsp; $T_{\rm D}$, when the Doppler PDS is the Jakes spectrum?
 
|type="()"}
 
|type="()"}
 
- $B_{\rm D} \cdot T_{\rm D} \approx $1,
 
- $B_{\rm D} \cdot T_{\rm D} \approx $1,
Line 67: Line 68:
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; <u>Solutions 1 and 2</u> are correct:  
 
'''(1)'''&nbsp; <u>Solutions 1 and 2</u> are correct:  
*Doppler PDF and Doppler PSD are generally only identical in shape.  
+
*Doppler PDF and Doppler PDS are generally only identical in shape.  
*But since in the example considered the integral over ${\it \Phi}_{\rm D}(f_{\rm D})$ is equal to $1$, (this can be easily seen from the correlation value $\varphi_{\rm Z}(\Delta t = 0) = 1$), the Doppler PDF and the Doppler PSD are identical in this example.  
+
*But since in the example considered the integral over&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; is equal to&nbsp; $1$ &nbsp; &rArr; &nbsp;this can be easily seen from the correlation value&nbsp; $\varphi_{\rm Z}(\Delta t = 0) = 1$, the Doppler PDF and the Doppler PDS are identical in this example.  
*If the Rayleigh parameter $\sigma$ had been chosen differently, this would not apply.
+
*If the Rayleigh parameter&nbsp; $\sigma$&nbsp; had been chosen differently, this would not apply.
  
  
'''(2)'''&nbsp; From the axial symmetry of ${\it \Phi}_{\rm D}(f_{\rm D})$ you can see that the mean Doppler shift is $m_{\rm D} = {\rm E}\big [f_{\rm D}\big] = 0$.  
+
 
*The variance of the random variable $f_{\rm D}$ can thus be calculated directly as a mean square value:
+
'''(2)'''&nbsp; From the axial symmetry of&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; you can see that the mean Doppler shift is&nbsp; $m_{\rm D} = {\rm E}\big [f_{\rm D}\big] = 0$.  
 +
*The variance of the random variable&nbsp; $f_{\rm D}$&nbsp; can thus be calculated directly as a mean square value:
 
:$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}/{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D}
 
:$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}/{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Using symmetry and the substitution $u = f_{\rm D}/f_{\rm D, \ max}$, we obtain
+
*Using symmetry and the substitution&nbsp; $u = f_{\rm D}/f_{\rm D, \ max}$, we obtain
 
:$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u  
 
:$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u  
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
Line 88: Line 90:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*The Doppler spread is equal to the standard deviation of $f_D$, i.e., the square root of its variance:
+
*The Doppler spread is equal to the standard deviation of&nbsp; $f_{\rm D}$, i.e., the square root of its variance:
 
:$$B_{\rm D} = \sigma_{\rm D}  = \frac{f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline{35.35\,{\rm Hz}}\\
 
:$$B_{\rm D} = \sigma_{\rm D}  = \frac{f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline{35.35\,{\rm Hz}}\\
 
  \underline{70.7\,{\rm Hz}}  \end{array} \right.\quad
 
  \underline{70.7\,{\rm Hz}}  \end{array} \right.\quad
Line 94: Line 96:
 
\\  {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz} \\ \end{array}
 
\\  {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz} \\ \end{array}
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
 +
  
  
 
'''(3)'''&nbsp; With the Bessel values given, one obtains
 
'''(3)'''&nbsp; With the Bessel values given, one obtains
* for &nbsp; $f_{\rm D, \ max} = 50 \ \rm Hz$:
+
* for&nbsp; $f_{\rm D, \ max} = 50 \ \rm Hz$:
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
* for &nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$:
+
* for&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$:
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$
 
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =  {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; The coherence time $T_{\rm D}$ is derived from the correlation function $\varphi_{\rm Z}(\Delta t)$. $T_{\rm D}$ is the value of $\Delta t$ where $|\varphi_{\rm Z}(\delta t)|$ has decayed to half of its maximum value. It must hold:
+
'''(4)'''&nbsp; The coherence time&nbsp; $T_{\rm D}$&nbsp; is derived from the correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$.&nbsp; $T_{\rm D}$&nbsp; is the specific value&nbsp; of $\Delta t$&nbsp; where&nbsp; $|\varphi_{\rm Z}(\Delta t)|$&nbsp; has decayed to half of its maximum value.&nbsp; It must hold:
 
:$$\varphi_{\rm Z}(\Delta t = T_{\rm D}) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm}  
 
:$$\varphi_{\rm Z}(\Delta t = T_{\rm D}) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52  
 
\Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52  
Line 111: Line 114:
  
  
'''(5)'''&nbsp; In the subtasks '''(2)''' and '''(4)''' we obtained:
+
 
 +
'''(5)'''&nbsp; In the subtasks&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp; we obtained:
 
:$$B_{\rm D} =  \frac{ f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} =  \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm}
 
:$$B_{\rm D} =  \frac{ f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} =  \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} =  \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} =  \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$
Line 119: Line 123:
  
  
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]

Latest revision as of 12:41, 17 February 2022

Doppler power-spectral density and correlation function

In the frequency domain, the influence of Rayleigh fading is described by the  Jakes spectrum.  If the Rayleigh parameter is  $\sigma = \sqrt{0.5}$  the Jakes spectrum is

$${\it \Phi}_{\rm D}(f_{\rm D}) = \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } $$

in the Doppler frequency range  $(|f_{\rm D}| ≤ f_{\rm D, \ max})$,  and zero otherwise.  This function is sketched for  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blue curve) and  $f_{\rm D, \ max} = 100 \ \rm Hz$  (red curve).

The correlation function  $\varphi_{\rm Z}(\Delta t)$  is the inverse Fourier transform of the Doppler power-spectral density  ${\it \Phi}_{\rm D}(f)$:

$$\varphi_{\rm Z}(\Delta t ) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$

${\rm J}_0$  denotes the zeroth-order Bessel function of the first kind.  The correlation function  $\varphi_{\rm Z}(\Delta t)$  which is also symmetrical, is drawn below, but for space reasons only the right half.

A characteristic value can be derived from each of these two description functions:

  • The  Doppler spread  $B_{\rm D}$  refers to the Doppler PDS  ${\it \Phi}_{\rm D}(f_{\rm D})$  and is equal to the standard deviation  $\sigma_{\rm D}$  of the Doppler frequency  $f_{\rm D}$. 
Note that the Jakes spectrum is zero-mean, so that the variance  $\sigma_{\rm D}^2$  according to Steiner's theorem is equal to the second moment  ${\rm E}\big[f_{\rm D}^2\big]$.  The calculation is analogous to the determination of the delay spread  $T_{\rm V}$  from the delay PDS  ${\it \Phi}_{\rm V}(\tau)$   ⇒   Exercise 2.7.
  • The  coherence time $T_{\rm D}$  refers to the time correlation function  $\varphi_{\rm Z}(\Delta t)$ .
$T_{\rm D}$  is the value of  $\Delta t$  at which the magnitude  $|\varphi_{\rm Z}(\Delta t)|$  first drops to half of the maximum  $($at  $\Delta t = 0)$ . One recognizes the analogy with the determination of the coherence bandwidth  $B_{\rm K}$  from the frequency correlation function  $\varphi_{\rm F}(\Delta f)$   ⇒   Exercise 2.7.




Notes:

$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \hspace{0.05cm}.$$
  • We also provide the following few values of the zeroth-order Bessel function of the first kind $({\rm J}_0)$:
$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.4cm} {\rm J}_0(2\pi) = 0.221 \hspace{0.05cm}.$$



Questionnaire

1

Which statements apply to the probability density function (PDF) of the Doppler frequency in this example?

The Doppler PDF is always identical in shape to the Doppler PDS.
The Doppler PDF is identical with the Doppler PDS in this example.
Doppler PDF and Doppler PDS differ fundamentally.

2

Determine the Doppler spread $B_{\rm D}$.

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} B_{\rm D} \ = \ $

$\ \ \rm Hz$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} B_{\rm D} \ = \ $

$\ \ \rm Hz$

3

What is the time correlation value for  $\Delta t = 5 \ \ \rm ms$?

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ $

$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ $

4

What are the coherence times  $T_{\rm D}$  for both parameter sets?

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \ \hspace{0.6cm} T_{\rm D} \ = \ $

$\ \ \rm ms$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \ \hspace{0.4cm} T_{\rm D} \ = \ $

$\ \ \rm ms$

5

What is the relationship between the Doppler spread  $B_{\rm D}$  and the coherence time  $T_{\rm D}$, when the Doppler PDS is the Jakes spectrum?

$B_{\rm D} \cdot T_{\rm D} \approx $1,
$B_{\rm D} \cdot T_{\rm D} \approx 0.5$,
$B_{\rm D} \cdot T_{\rm D} \approx $0.171.


Solution

(1)  Solutions 1 and 2 are correct:

  • Doppler PDF and Doppler PDS are generally only identical in shape.
  • But since in the example considered the integral over  ${\it \Phi}_{\rm D}(f_{\rm D})$  is equal to  $1$   ⇒  this can be easily seen from the correlation value  $\varphi_{\rm Z}(\Delta t = 0) = 1$, the Doppler PDF and the Doppler PDS are identical in this example.
  • If the Rayleigh parameter  $\sigma$  had been chosen differently, this would not apply.


(2)  From the axial symmetry of  ${\it \Phi}_{\rm D}(f_{\rm D})$  you can see that the mean Doppler shift is  $m_{\rm D} = {\rm E}\big [f_{\rm D}\big] = 0$.

  • The variance of the random variable  $f_{\rm D}$  can thus be calculated directly as a mean square value:
$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}/{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D} \hspace{0.05cm}.$$
  • Using symmetry and the substitution  $u = f_{\rm D}/f_{\rm D, \ max}$, we obtain
$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u \hspace{0.05cm}. $$
  • With the integral provided in the task description, you get further:
$$\sigma_{\rm D}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \left [ -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \right ]_0^1 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \frac{2}{2}\cdot \frac{\pi}{2} = \frac{f_{\rm D,\hspace{0.05cm}max}^2}{2} \hspace{0.05cm}.$$
  • The Doppler spread is equal to the standard deviation of  $f_{\rm D}$, i.e., the square root of its variance:
$$B_{\rm D} = \sigma_{\rm D} = \frac{f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline{35.35\,{\rm Hz}}\\ \underline{70.7\,{\rm Hz}} \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz} \\ {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz} \\ \end{array} \hspace{0.05cm}. $$


(3)  With the Bessel values given, one obtains

  • for  $f_{\rm D, \ max} = 50 \ \rm Hz$:
$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) = {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
  • for  $f_{\rm D, \ max} = 100 \ \rm Hz$:
$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) = {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$


(4)  The coherence time  $T_{\rm D}$  is derived from the correlation function  $\varphi_{\rm Z}(\Delta t)$.  $T_{\rm D}$  is the specific value  of $\Delta t$  where  $|\varphi_{\rm Z}(\Delta t)|$  has decayed to half of its maximum value.  It must hold:

$$\varphi_{\rm Z}(\Delta t = T_{\rm D}) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}} = \frac{0.242}{ f_{\rm D,\hspace{0.05cm}max}}$$
$$\Rightarrow \hspace{0.3cm} f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\text{:} \ \hspace{-0.1cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 4.84\,{\rm ms}} \hspace{0.05cm},\hspace{0.8cm} f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\text{:} \ \hspace{-0.1cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 2.42\,{\rm ms}} \hspace{0.05cm}. $$


(5)  In the subtasks  (2)  and  (4)  we obtained:

$$B_{\rm D} = \frac{ f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} = \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$

Therefore, the last option is the correct one.