Difference between revisions of "Aufgaben:Exercise 2.8: COST Delay Models"

From LNTwww
m (Text replacement - "power spectral density" to "power-spectral density")
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:Mob_A_2_8_version2.png|right|frame|COST–Verzögerungsmodelle]]
+
[[File:Mob_A_2_8_version2.png|right|frame|COST delay models]]
 
On the right, four delay power density spectra are plotted logarithmically as a function of the delay time  $\tau$   
 
On the right, four delay power density spectra are plotted logarithmically as a function of the delay time  $\tau$   
:$$10 \cdot {\rm lg}\hspace{0.15cm} ({{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}) \hspace{0.05cm},$$
+
:$$10 \cdot {\rm lg}\hspace{0.15cm} ({{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}) \hspace{0.05cm}.$$
  
Here the abbreviation&nbsp; $\phi_0 = \phi_{\rm V}(\tau = 0)$&nbsp; is used. These are the so-called <i>COST&ndash;delay models</i>.  
+
Here the abbreviation&nbsp; $\phi_0 = \phi_{\rm V}(\tau = 0)$&nbsp; is used.&nbsp; These are the so-called COST delay models.  
  
The upper sketch contains the two profiles &nbsp;${\rm RA}$&nbsp; (<i>Rural Area</i>) and &nbsp;${\rm TU}$&nbsp; (<i>Typical Urban</i>). Both of these are exponential:
+
The upper sketch contains the two profiles &nbsp;${\rm RA}$&nbsp; ("Rural Area") and &nbsp;${\rm TU}$&nbsp; ("Typical Urban").&nbsp; Both of these are exponential:
 
:$${{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.05cm}.$$
 
:$${{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.05cm}.$$
  
The value of the parameter&nbsp; $\tau_0$&nbsp; (time constant of the ACF) should be determined from the graphic in subtask '''(1)'''. Note the specified values of &nbsp; $\tau_{-30}$ for&nbsp; ${\it \Phi}_{\rm V}(\tau_{-30})=-30 \ \rm dB$:
+
The value of the parameter&nbsp; $\tau_0$&nbsp; (time constant of the auto-correlation function) should be determined from the graphic in subtask&nbsp; '''(1)'''.&nbsp; Note the specified values of &nbsp; $\tau_{-30}$ for&nbsp; ${\it \Phi}_{\rm V}(\tau_{-30})=-30 \ \rm dB$:
 
:$${\rm RA}\text{:}\hspace{0.15cm}\tau_{-30} = 0.75\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.2cm}
 
:$${\rm RA}\text{:}\hspace{0.15cm}\tau_{-30} = 0.75\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.2cm}
 
  {\rm TU}\text{:}\hspace{0.15cm}\tau_{-30} = 6.9\,{\rm &micro; s} \hspace{0.05cm}.  $$
 
  {\rm TU}\text{:}\hspace{0.15cm}\tau_{-30} = 6.9\,{\rm &micro; s} \hspace{0.05cm}.  $$
  
 
The lower graph applies to less favourable conditions in
 
The lower graph applies to less favourable conditions in
* urban areas (<i>Bad Urban</i>, &nbsp;${\rm BU}$):
+
* urban areas ("Bad Urban", &nbsp;${\rm BU}$):
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
 
  = \left\{ \begin{array}{c}  {\rm e}^{ -\tau / \tau_0} \\
 
  = \left\{ \begin{array}{c}  {\rm e}^{ -\tau / \tau_0} \\
Line 23: Line 23:
 
\\  \hspace{-0.15cm} {\,\, \,\, \rm if}\hspace{0.15cm}5\,{\rm &micro; s} < \tau < 10\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}, \end{array}$$
 
\\  \hspace{-0.15cm} {\,\, \,\, \rm if}\hspace{0.15cm}5\,{\rm &micro; s} < \tau < 10\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}, \end{array}$$
  
* in rural areas (<i>Hilly Terrain</i>, &nbsp;${\rm HT}$):
+
* in rural areas ("Hilly Terrain", &nbsp;${\rm HT}$):
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\
Line 30: Line 30:
 
\\  \hspace{-0.35cm} {\rm if}\hspace{0.15cm}15\,{\rm &micro; s} < \tau < 20\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}. \end{array}$$
 
\\  \hspace{-0.35cm} {\rm if}\hspace{0.15cm}15\,{\rm &micro; s} < \tau < 20\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}. \end{array}$$
  
For the models&nbsp; &nbsp;${\rm RA}$, &nbsp;${\rm TU}$&nbsp; and&nbsp; &nbsp; &nbsp;${\rm BU}$&nbsp; the following parameters are to be determined:
+
For the models&nbsp; ${\rm RA}$, &nbsp;${\rm TU}$&nbsp; and&nbsp; ${\rm BU}$&nbsp; the following parameters are to be determined:
* The&nbsp; <b>delay spread</b>&nbsp; $T_{\rm V}$&nbsp; is the standard deviation of the delay&nbsp; $\tau$. <br>If the delaypower density spectrum&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; has an exponential course as with the profiles &nbsp;${\rm RA}$&nbsp; and &nbsp;${\rm TU}$, then&nbsp; $T_{\rm V} = \tau_0$, see&nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth|Exercise 2.7]].
+
* The&nbsp; <b>delay spread</b>&nbsp; $T_{\rm V}$&nbsp; is the standard deviation of the delay&nbsp; $\tau$. <br>If the delay power-spectral density&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; has an exponential course as with the profiles &nbsp;${\rm RA}$&nbsp; and &nbsp;${\rm TU}$, then&nbsp; $T_{\rm V} = \tau_0$, see&nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth|Exercise 2.7]].
  
* The <b>coherence bandwidth</b>&nbsp; $B_{\rm K}$&nbsp; is the value of &nbsp;$\Delta f$ at which the magnitude of the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; has dropped to half its value for the first time. With exponential&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; as with &nbsp;${\rm RA}$&nbsp; and &nbsp;${\rm TU}$&nbsp; the product&nbsp; $T_{\rm V} is \cdot B_{\rm K} \approx 0.276$, see&nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth|Exercise 2.7]].
+
* The <b>coherence bandwidth</b>&nbsp; $B_{\rm K}$&nbsp; is the value of &nbsp;$\Delta f$ at which the magnitude of the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; has dropped to half its value for the first time. With exponential&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; as with &nbsp;${\rm RA}$&nbsp; and &nbsp;${\rm TU}$&nbsp; the product is&nbsp; $T_{\rm V} \cdot B_{\rm K} \approx 0.276$, see&nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth|Exercise 2.7]].
  
  
Line 41: Line 41:
  
 
''Notes:''
 
''Notes:''
* This task belongs to chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| GWSSUS&ndash;Kanalmodell]].  
+
*This exercise belongs to the chapter [[Mobile_Communications/The_GWSSUS_Channel_Model|The GWSSUS Channel Model]].
 
* The following integrals are given:
 
* The following integrals are given:
 
:$$\frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\rm e}^{ -\tau / \tau_0} \hspace{0.15cm}{\rm d} \tau = 1  
 
:$$\frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\rm e}^{ -\tau / \tau_0} \hspace{0.15cm}{\rm d} \tau = 1  
Line 53: Line 53:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Specify the parameter&nbsp; $\tau_0$&nbsp; of the delay power density spectrum for the profiles &nbsp;${\rm RA}$&nbsp; and &nbsp;${\rm TU}$&nbsp;.
+
{Specify the parameter&nbsp; $\tau_0$&nbsp; of the delay power-spectral density for the profiles &nbsp;${\rm RA}$&nbsp; and &nbsp;${\rm TU}$&nbsp;.
 
|type="{}"}
 
|type="{}"}
${\rm RA} \text \ \hspace{0.4cm} \tau_0 \ = \ ${ 0.109 3% } $\ \rm &micro; s$
+
${\rm RA} \text{:} \ \hspace{0.4cm} \tau_0 \ = \ ${ 0.109 3% } $\ \rm &micro; s$
${\rm TU} \text \ \hspace{0.4cm} \tau_0 \ = \ ${ 1 3% } $\ \rm &micro; s$
+
${\rm TU} \text{:} \ \hspace{0.4cm} \tau_0 \ = \ ${ 1 3% } $\ \rm &micro; s$
  
 
{How large is the delay spread&nbsp; $T_{\rm V}$&nbsp; of these channels?
 
{How large is the delay spread&nbsp; $T_{\rm V}$&nbsp; of these channels?
 
|type="{}"}
 
|type="{}"}
${\rm RA} \text \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.109 3% } $\ \rm &micro; s$
+
${\rm RA} \text{:} \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.109 3% } $\ \rm &micro; s$
${\rm TU} \text \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 1 3% } $\ \rm &micro; s$
+
${\rm TU} \text{:} \ \hspace{0.4cm} T_{\rm V} \ = \ ${ 1 3% } $\ \rm &micro; s$
  
 
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of these channels?
 
{What is the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; of these channels?
Line 69: Line 69:
  
 
{For which channel does frequency selectivity play a greater role?
 
{For which channel does frequency selectivity play a greater role?
|type="[]"}
+
|type="()"}
 
- Rural Area &nbsp;$({\rm RA})$.
 
- Rural Area &nbsp;$({\rm RA})$.
 
+ Typical urban &nbsp;$({\rm TU})$.
 
+ Typical urban &nbsp;$({\rm TU})$.
  
{How large is the (normalized) power density for &bdquo;Bad Urban&rdquo;&nbsp; $({\rm BU})$ &nbsp; with &nbsp; $\tau = 5,001 \ \rm &micro; s$&nbsp; and with &nbsp; $\tau = 4,999 \ \rm &micro; s$?
+
{How large is the (normalized) power density for&nbsp; "Bad Urban"&nbsp; $({\rm BU})$ &nbsp; with &nbsp; $\tau = 5.001 \ \rm &micro; s$&nbsp; and with &nbsp; $\tau = 4.999 \ \rm &micro; s$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm &micro; s) \ = \ ${ 0.5 3% } $\ \cdot {\it \Phi}_0$
 
${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm &micro; s) \ = \ ${ 0.5 3% } $\ \cdot {\it \Phi}_0$
${\it \Phi}_{\rm V}(\tau = 4,999 \ \rm &micro; s) \ = \ ${ 0.00674 3% } $\ \cdot {\it \Phi}_0$
+
${\it \Phi}_{\rm V}(\tau = 4.999 \ \rm &micro; s) \ = \ ${ 0.00674 3% } $\ \cdot {\it \Phi}_0$
  
{We consider&nbsp; ${\rm BU}$ again. Let $P_1$ be the power of the signal between $0$&nbsp; and&nbsp; $5 \ \rm &micro; s$, and let $P_2$ be the remaining signal power. What percentage of the total signal power is $0$&nbsp; and&nbsp; $5 \ \rm &micro; s$? |type="{}" }
+
{We consider&nbsp; ${\rm BU}$ again. Let $P_1$ be the power of the signal between $0$&nbsp; and&nbsp; $5 \ \rm &micro; s$, and let $P_2$ be the remaining signal power. <br>What percentage of the total signal power comes from the interval
$P_1/(P_1 + P_2) \ = \ ${ 66.7 3% } $\ \ \rm \%$
+
$0< t < 5 \ \rm &micro; s$?  
 +
|type="{}"}
 +
$P_1/(P_1 + P_2) \ = \ ${ 66.7 3% } $\ \rm \%$
  
{Calculate the delay spread&nbsp; $T_{\rm V}$&nbsp; of the profile&nbsp; ${\rm BU}$. ''Note'': The average delay is&nbsp; $m_{\rm V} = E[\tau] = 2.667 \ \rm &micro; s$.
+
{Calculate the delay spread&nbsp; $T_{\rm V}$&nbsp; of the profile&nbsp; ${\rm BU}$. <br>''Note'':&nbsp; The average delay is&nbsp; $m_{\rm V} = E[\tau] = 2.667 \ \rm &micro; s$.
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm V} \ = \ ${ 2.56 3% } $\ \rm &micro; s$
 
$T_{\rm V} \ = \ ${ 2.56 3% } $\ \rm &micro; s$
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; The following property can be seen from the graph:
 
'''(1)'''&nbsp; The following property can be seen from the graph:
Line 97: Line 99:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Here $\tau_{-30}$ denotes the delay that leads to the logarithmic ordinate value $-30 \ \rm dB$. Thus one obtains
+
Here&nbsp; $\tau_{-30}$&nbsp; denotes the delay that leads to the logarithmic ordinate value&nbsp; $-30 \ \rm dB$.&nbsp; Thus one obtains
* for rural area (<b>RA</b>) with $\tau_{&ndash;30} = 0.75 \ \rm &micro; s$:
+
* for "Rural Area"&nbsp; $\rm (RA)$&nbsp; with&nbsp; $\tau_{&ndash;30} = 0.75 \ \rm &micro; s$:
:$$\tau_{\rm 0} = \frac{0.75\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm &micro; s}}
+
:$$\tau_{\rm 0} = \frac{0.75\,{\rm &micro; s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm &micro; s}}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
* for urban and suburban areas (<i>Typical Urban</i>, <b>TU</b>) with $\tau_{&ndash;30} = 6.9 \ \rm &micro; s$:
+
* for urban and suburban areas&nbsp; &rArr; &nbsp; "Typical Urban" $\rm (TU)$&nbsp; with&nbsp; $\tau_{&ndash;30} = 6.9 \ \rm &micro; s$:
:$$\tau_{\rm 0} = \frac{6.9\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm &micro; s}}
+
:$$\tau_{\rm 0} = \frac{6.9\,{\rm &micro; s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm &micro; s}}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
  
'''(2)'''&nbsp; In [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth|Exercise 2.7]], it was shown that the delay spread is $T_{\rm V} =\tau_0$ when the delay power density spectrum decreases exponentially according to ${\rm e}^{-\tau/\tau_0}$. Thus the following applies:
+
'''(2)'''&nbsp; In&nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth|Exercise 2.7]], it was shown that the delay spread is&nbsp; $T_{\rm V} =\tau_0$&nbsp; when the delay power-spectral density decreases exponentially according to&nbsp; ${\rm e}^{-\tau/\tau_0}$.&nbsp; Thus the following applies:
* for &bdquo;Rural Area&rdquo;: $\hspace{0.4cm} T_{\rm V} \ \underline {= 0.109 \ \rm &micro; s}$,
+
* for "Rural Area":&nbsp; $\hspace{0.4cm} T_{\rm V} \ \underline {= 0.109 \ \rm &micro; s}$,
* for &bdquo;Typical Urban&rdquo;: $\hspace{0.4cm} T_{\rm V} \ \ \underline {= 1 \ \rm & micro; s}$.
+
* for "Typical Urban":&nbsp; $\hspace{0.4cm} T_{\rm V} \ \underline {= 1 \ \rm &micro; s}$.
  
  
  
'''(3)'''&nbsp; In [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth|Exercise 2.7]] it was also shown that for the coherence bandwidth $B_{\rm K} \approx 0.276/\tau_0$ applies. It follows:  
+
'''(3)'''&nbsp; In Exercise 2.7 it was also shown that for the coherence bandwidth&nbsp; $B_{\rm K} \approx 0.276/\tau_0$&nbsp; applies.&nbsp; It follows:  
*$B_{\rm K} \ \underline {\approx 2500 \ \rm kHz}$ (&bdquo;Rural Area&rdquo;),
+
*$B_{\rm K} \ \underline {\approx 2500 \ \rm kHz}$ ("Rural Area"),
* $B_{\rm K} \ \underline {\approx 276 \ \ \rm kHz}$ (&bdquo;Typical Urban&rdquo;)
+
*$B_{\rm K} \ \underline {\approx 276 \ \ \rm kHz}$ ("Typical Urban")
  
  
Line 120: Line 122:
  
 
'''(4)'''&nbsp;The <u>second solution</u> is correct:  
 
'''(4)'''&nbsp;The <u>second solution</u> is correct:  
*Frequency selectivity of the mobile radio channel is present if the signal bandwidth $B_{\rm S}$ is larger than the coherence bandwidth $B_{\rm K}$ (or at least of the same order of magnitude).  
+
*Frequency selectivity of the mobile radio channel is present if the signal bandwidth&nbsp; $B_{\rm S}$&nbsp; is larger than the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; (or at least of the same order of magnitude).  
*The smaller $B_{\rm K}$ is, the more often this happens.  
+
*The smaller&nbsp; $B_{\rm K}$&nbsp; is, the more often this happens.  
  
  
  
'''(5)'''&nbsp; According to the given equation, we have ${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm &micro; s)/{\it \Phi}_0 \hspace{0.15cm}\underline{\approx0.5}$.  
+
'''(5)'''&nbsp; According to the given equation, we have&nbsp; ${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm &micro; s)/{\it \Phi}_0 \hspace{0.15cm}\underline{\approx0.5}$.  
*On the other hand, for slightly smaller $\tau$ (for example $\tau = 4,999 \ \rm &micro; s$) we have approximately
+
*On the other hand, for slightly smaller&nbsp; $\tau$&nbsp; $($for example $\tau = 4.999 \ \rm &micro; s)$&nbsp; we have approximately
 
:$${{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}/{{\it \Phi}_{\rm 0}} = {\rm e}^{ -{4.999\,{\rm &micro; s}}/{ 1\,{\rm \mu s}}}  
 
:$${{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}/{{\it \Phi}_{\rm 0}} = {\rm e}^{ -{4.999\,{\rm &micro; s}}/{ 1\,{\rm \mu s}}}  
 
  \approx {\rm e}^{-5} \hspace{0.1cm}\underline {= 0.00674 }\hspace{0.05cm}.$$
 
  \approx {\rm e}^{-5} \hspace{0.1cm}\underline {= 0.00674 }\hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; The power $P_1$ of all signal components with delays between $0$ and $5 \ \mu\rm &nbsp; s$ is:
+
'''(6)'''&nbsp; The power&nbsp; $P_1$&nbsp; of all signal components with delays between&nbsp; $0$&nbsp; and&nbsp; $5 \ &micro;\rm &nbsp; s$&nbsp; is:
 
:$$P_1 =  {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}
 
:$$P_1 =  {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}
 
  {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm e}^{ -{\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau  
 
  {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm e}^{ -{\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau  
 
  = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.$$
 
  = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.$$
  
*The power outside $[0\;\mu \mathrm{s}, 5\;\mu \mathrm{s}]$ is
+
*The power outside&nbsp; $[0\;&micro; \mathrm{s}, 5\;&micro; \mathrm{s}]$&nbsp; is
 
:$$P_2 =  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm &micro; s}}^{\infty} {\rm exp}[ \frac{5\,{\rm &micro; s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}  
 
:$$P_2 =  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm &micro; s}}^{\infty} {\rm exp}[ \frac{5\,{\rm &micro; s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}  
 
  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  
 
  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  
 
  = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}. $$
 
  = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}. $$
  
*Correspondingly, the percentage of power between $0$ and $5 \  \mu\rm &nbsp; s$ is
 
 
[[File:P_ID2184__Mob_A_2_8f.png|right|frame|Delay power density of the COST profiles &nbsp;${\rm BU}$&nbsp; and &nbsp;${\rm HT}$]]
 
[[File:P_ID2184__Mob_A_2_8f.png|right|frame|Delay power density of the COST profiles &nbsp;${\rm BU}$&nbsp; and &nbsp;${\rm HT}$]]
 +
 +
*Correspondingly, the percentage of power between&nbsp; $0$&nbsp; and&nbsp; $5 \  &micro;\rm &nbsp; s$&nbsp; is
 
:$$\frac{P_1}{P_1+ P_2} =  \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.$$
 
:$$\frac{P_1}{P_1+ P_2} =  \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.$$
  
The figure shows ${\it \Phi}_{\rm V}(\tau)$ in linear scale:
+
The figure shows&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; in linear scale.&nbsp; The areas&nbsp; $P_1$&nbsp; and&nbsp; $P_2$&nbsp; are labeled.  
*The areas $P_1$ and $P_2$ are labeled.  
 
 
*The left graph is for &nbsp;${\rm BU}$, the right graph is for &nbsp;${\rm HT}$.  
 
*The left graph is for &nbsp;${\rm BU}$, the right graph is for &nbsp;${\rm HT}$.  
*For the latter, the power percentage of all later echoes (later than $15 \ \rm &micro; s$) is only about $12\%$.
+
*For the latter, the power percentage of all later echoes&nbsp; $($later than&nbsp; $15 \ \rm &micro; s)$&nbsp; is only about&nbsp; $12\%$.
 
<br clear=all>
 
<br clear=all>
'''(7)'''&nbsp; The area of the entire power density spectrum gives $P = 1.5 \cdot \phi_0 \cdot \tau_0$.  
+
'''(7)'''&nbsp; The area of the entire power-spectral density gives&nbsp; $P = 1.5 \cdot \phi_0 \cdot \tau_0$.
*Normalizing ${\it \Phi}_{\rm V}(\tau)$ to this value yields the probability density function $f_{\rm V}(\tau)$, as shown in the next graph (left diagram).
+
[[File:EN_Mob_A_2_8.png|right|frame|Delay PDF of profile &nbsp;${\rm BU}$ ]]
  
[[File:P_ID2185__Mob_A_2_8g.png|right|frame|Delay PDF of profile &nbsp;${\rm BU}$]]
+
*Normalizing&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; to this value yields the probability density function&nbsp; $f_{\rm V}(\tau)$, as shown in the graph on the right (left diagram).
  
*With $\tau_0 = 1 \ \ \rm &micro; s$ and &nbsp; $\tau_5 = 5 \ \ \rm &micro; s$, the mean is:
+
*With&nbsp; $\tau_0 = 1 \ \ \rm &micro; s$&nbsp; and&nbsp; $\tau_5 = 5 \ \ \rm &micro; s$, the mean is:
 
:$$m_{\rm V}=  \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau$$
 
:$$m_{\rm V}=  \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau$$
 
:$$\Rightarrow \hspace{0.3cm}m_{\rm V}=  \frac{2}{3\tau_0} \cdot  \int_{0}^{\tau_5} \tau \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau \  + $$
 
:$$\Rightarrow \hspace{0.3cm}m_{\rm V}=  \frac{2}{3\tau_0} \cdot  \int_{0}^{\tau_5} \tau \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau \  + $$
 
:$$ \hspace{1.7cm}+\  \frac{1}{3\tau_0} \cdot  \int_{\tau_5}^{\infty} \tau \cdot {\rm e}^{ (\tau_5 -\tau)/\tau_0}\hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}. $$
 
:$$ \hspace{1.7cm}+\  \frac{1}{3\tau_0} \cdot  \int_{\tau_5}^{\infty} \tau \cdot {\rm e}^{ (\tau_5 -\tau)/\tau_0}\hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}. $$
  
*The first integral is equal to $2\tau_0/3$ according to the provided expression.  
+
*The first integral is equal to&nbsp; $2\tau_0/3$&nbsp; according to the provided expression.  
  
*With the substitution $\tau' = \tau \, -\tau_5$ you finally obtain using the integral solutions given above:
+
*With the substitution&nbsp; $\tau' = \tau \, -\tau_5$&nbsp; you finally obtain using the integral solutions given above:
 
:$$m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} +  \frac{1}{3\tau_0}  \cdot  \int_{0}^{\infty} (\tau_5 + \tau') \cdot{\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' =  \frac{2\tau_0}{3} +   
 
:$$m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} +  \frac{1}{3\tau_0}  \cdot  \int_{0}^{\infty} (\tau_5 + \tau') \cdot{\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' =  \frac{2\tau_0}{3} +   
 
  \frac{\tau_5}{3\tau_0}  \cdot  \int_{0}^{\infty} \cdot{\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' +  
 
  \frac{\tau_5}{3\tau_0}  \cdot  \int_{0}^{\infty} \cdot{\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' +  
Line 170: Line 172:
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
*The variance $\sigma_{\rm V}^2$ is equal to the second moment (mean of the square) of the zero-mean random variable $\theta = \tau \, &ndash;m_{\rm V}$, whose PDF is shown in the right graph  
+
*The variance&nbsp; $\sigma_{\rm V}^2$&nbsp; is equal to the second moment (mean of the square) of the zero-mean random variable&nbsp; $\theta = \tau \, &ndash;m_{\rm V}$, whose PDF is shown in the right graph  
*From this $T_{\rm V} = \sigma_{\rm V}$ can be specified.
+
*From this&nbsp; $T_{\rm V} = \sigma_{\rm V}$&nbsp; can be specified.
 +
 
  
*A second possibility is to first calculate the mean square value of the random variable $\tau$ and from this the variance $\sigma_{\rm V}^2$ using Steiner's theorem.  
+
A second possibility is to first calculate the mean square value of the random variable&nbsp; $\tau$&nbsp; and from this the variance&nbsp; $\sigma_{\rm V}^2$&nbsp; using Steiner's theorem.  
 
*With the substitutions and approximations already described above, one obtains
 
*With the substitutions and approximations already described above, one obtains
 
:$$m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm}    \frac{2}{3\tau_0} \cdot  \int_{0}^{\infty} \tau^2 \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau  +  \frac{1}{3\tau_0} \cdot  \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' $$
 
:$$m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm}    \frac{2}{3\tau_0} \cdot  \int_{0}^{\infty} \tau^2 \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau  +  \frac{1}{3\tau_0} \cdot  \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' $$
Line 186: Line 189:
 
:$$\Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm &micro; s}}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
The above graph shows the parameters $T_{\rm V}$ and $\sigma_{\rm V}$.
+
The above graph shows the parameters&nbsp; $T_{\rm V}$ and $\sigma_{\rm V}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]

Latest revision as of 12:41, 17 February 2022

COST delay models

On the right, four delay power density spectra are plotted logarithmically as a function of the delay time  $\tau$ 

$$10 \cdot {\rm lg}\hspace{0.15cm} ({{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}) \hspace{0.05cm}.$$

Here the abbreviation  $\phi_0 = \phi_{\rm V}(\tau = 0)$  is used.  These are the so-called COST delay models.

The upper sketch contains the two profiles  ${\rm RA}$  ("Rural Area") and  ${\rm TU}$  ("Typical Urban").  Both of these are exponential:

$${{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.05cm}.$$

The value of the parameter  $\tau_0$  (time constant of the auto-correlation function) should be determined from the graphic in subtask  (1).  Note the specified values of   $\tau_{-30}$ for  ${\it \Phi}_{\rm V}(\tau_{-30})=-30 \ \rm dB$:

$${\rm RA}\text{:}\hspace{0.15cm}\tau_{-30} = 0.75\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm} {\rm TU}\text{:}\hspace{0.15cm}\tau_{-30} = 6.9\,{\rm µ s} \hspace{0.05cm}. $$

The lower graph applies to less favourable conditions in

  • urban areas ("Bad Urban",  ${\rm BU}$):
$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\ 0.5 \cdot {\rm e}^{ (5\,{\rm \mu s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.55cm} {\rm if}\hspace{0.15cm}0 < \tau < 5\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}, \\ \hspace{-0.15cm} {\,\, \,\, \rm if}\hspace{0.15cm}5\,{\rm µ s} < \tau < 10\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}, \end{array}$$
  • in rural areas ("Hilly Terrain",  ${\rm HT}$):
$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\ {0.04 \cdot \rm e}^{ (15\,{\rm \mu s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.55cm} {\rm if}\hspace{0.15cm}0 < \tau < 2\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm µ s} \hspace{0.05cm}, \\ \hspace{-0.35cm} {\rm if}\hspace{0.15cm}15\,{\rm µ s} < \tau < 20\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \end{array}$$

For the models  ${\rm RA}$,  ${\rm TU}$  and  ${\rm BU}$  the following parameters are to be determined:

  • The  delay spread  $T_{\rm V}$  is the standard deviation of the delay  $\tau$.
    If the delay power-spectral density  ${\it \Phi}_{\rm V}(\tau)$  has an exponential course as with the profiles  ${\rm RA}$  and  ${\rm TU}$, then  $T_{\rm V} = \tau_0$, see  Exercise 2.7.
  • The coherence bandwidth  $B_{\rm K}$  is the value of  $\Delta f$ at which the magnitude of the frequency correlation function  $\varphi_{\rm F}(\Delta f)$  has dropped to half its value for the first time. With exponential  ${\it \Phi}_{\rm V}(\tau)$  as with  ${\rm RA}$  and  ${\rm TU}$  the product is  $T_{\rm V} \cdot B_{\rm K} \approx 0.276$, see  Exercise 2.7.




Notes:

$$\frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\rm e}^{ -\tau / \tau_0} \hspace{0.15cm}{\rm d} \tau = 1 \hspace{0.05cm},\hspace{0.6cm} \frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\tau} \cdot{\rm e}^{ -\tau / \tau_0}\hspace{0.15cm}{\rm d} \tau = \tau_0 \hspace{0.05cm},\hspace{0.6cm} \frac{1}{\tau_0} \cdot \int_{0}^{\infty} \hspace{-0.15cm}{\tau^2} \cdot{\rm e}^{ -\tau / \tau_0}\hspace{0.15cm}{\rm d} \tau = 2\tau_0^2\hspace{0.05cm}.$$


Questionnaire

1

Specify the parameter  $\tau_0$  of the delay power-spectral density for the profiles  ${\rm RA}$  and  ${\rm TU}$ .

${\rm RA} \text{:} \ \hspace{0.4cm} \tau_0 \ = \ $

$\ \rm µ s$
${\rm TU} \text{:} \ \hspace{0.4cm} \tau_0 \ = \ $

$\ \rm µ s$

2

How large is the delay spread  $T_{\rm V}$  of these channels?

${\rm RA} \text{:} \ \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$
${\rm TU} \text{:} \ \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$

3

What is the coherence bandwidth  $B_{\rm K}$  of these channels?

${\rm RA} \text{:} \ \hspace{0.4cm} B_{\rm K} \ = \ $

$\ \ \rm kHz$
${\rm TU} \text{:} \ \hspace{0.4cm} B_{\rm K} \ = \ $

$\ \ \rm kHz$

4

For which channel does frequency selectivity play a greater role?

Rural Area  $({\rm RA})$.
Typical urban  $({\rm TU})$.

5

How large is the (normalized) power density for  "Bad Urban"  $({\rm BU})$   with   $\tau = 5.001 \ \rm µ s$  and with   $\tau = 4.999 \ \rm µ s$?

${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm µ s) \ = \ $

$\ \cdot {\it \Phi}_0$
${\it \Phi}_{\rm V}(\tau = 4.999 \ \rm µ s) \ = \ $

$\ \cdot {\it \Phi}_0$

6

We consider  ${\rm BU}$ again. Let $P_1$ be the power of the signal between $0$  and  $5 \ \rm µ s$, and let $P_2$ be the remaining signal power.
What percentage of the total signal power comes from the interval $0< t < 5 \ \rm µ s$?

$P_1/(P_1 + P_2) \ = \ $

$\ \rm \%$

7

Calculate the delay spread  $T_{\rm V}$  of the profile  ${\rm BU}$.
Note:  The average delay is  $m_{\rm V} = E[\tau] = 2.667 \ \rm µ s$.

$T_{\rm V} \ = \ $

$\ \rm µ s$


Solution

(1)  The following property can be seen from the graph:

$$10 \cdot {\rm lg}\hspace{0.1cm} (\frac{{\it \Phi}_{\rm V}(\tau_{\rm -30})}{{\it \Phi}_0}) = 10 \cdot {\rm lg}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{ \tau_{\rm 0}}]\right ] \stackrel {!}{=} -30\,{\rm dB}$$
$$\Rightarrow \hspace{0.3cm} {\rm lg}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{ \tau_{\rm 0}}]\right ] = -3 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{ \tau_{\rm 0}}]\right ] = -3 \cdot {\rm ln}\hspace{0.1cm}(10)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau_{\rm 0} = \frac{\tau_{\rm -30}}{ 3 \cdot {\rm ln}\hspace{0.1cm}(10)}\approx \frac{\tau_{\rm -30}}{ 6.9} \hspace{0.05cm}.$$

Here  $\tau_{-30}$  denotes the delay that leads to the logarithmic ordinate value  $-30 \ \rm dB$.  Thus one obtains

  • for "Rural Area"  $\rm (RA)$  with  $\tau_{–30} = 0.75 \ \rm µ s$:
$$\tau_{\rm 0} = \frac{0.75\,{\rm µ s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm µ s}} \hspace{0.05cm},$$
  • for urban and suburban areas  ⇒   "Typical Urban" $\rm (TU)$  with  $\tau_{–30} = 6.9 \ \rm µ s$:
$$\tau_{\rm 0} = \frac{6.9\,{\rm µ s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm µ s}} \hspace{0.05cm},$$


(2)  In  Exercise 2.7, it was shown that the delay spread is  $T_{\rm V} =\tau_0$  when the delay power-spectral density decreases exponentially according to  ${\rm e}^{-\tau/\tau_0}$.  Thus the following applies:

  • for "Rural Area":  $\hspace{0.4cm} T_{\rm V} \ \underline {= 0.109 \ \rm µ s}$,
  • for "Typical Urban":  $\hspace{0.4cm} T_{\rm V} \ \underline {= 1 \ \rm µ s}$.


(3)  In Exercise 2.7 it was also shown that for the coherence bandwidth  $B_{\rm K} \approx 0.276/\tau_0$  applies.  It follows:

  • $B_{\rm K} \ \underline {\approx 2500 \ \rm kHz}$ ("Rural Area"),
  • $B_{\rm K} \ \underline {\approx 276 \ \ \rm kHz}$ ("Typical Urban")



(4) The second solution is correct:

  • Frequency selectivity of the mobile radio channel is present if the signal bandwidth  $B_{\rm S}$  is larger than the coherence bandwidth  $B_{\rm K}$  (or at least of the same order of magnitude).
  • The smaller  $B_{\rm K}$  is, the more often this happens.


(5)  According to the given equation, we have  ${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm µ s)/{\it \Phi}_0 \hspace{0.15cm}\underline{\approx0.5}$.

  • On the other hand, for slightly smaller  $\tau$  $($for example $\tau = 4.999 \ \rm µ s)$  we have approximately
$${{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}/{{\it \Phi}_{\rm 0}} = {\rm e}^{ -{4.999\,{\rm µ s}}/{ 1\,{\rm \mu s}}} \approx {\rm e}^{-5} \hspace{0.1cm}\underline {= 0.00674 }\hspace{0.05cm}.$$


(6)  The power  $P_1$  of all signal components with delays between  $0$  and  $5 \ µ\rm   s$  is:

$$P_1 = {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm e}^{ -{\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.$$
  • The power outside  $[0\;µ \mathrm{s}, 5\;µ \mathrm{s}]$  is
$$P_2 = \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm µ s}}^{\infty} {\rm exp}[ \frac{5\,{\rm µ s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}. $$
Delay power density of the COST profiles  ${\rm BU}$  and  ${\rm HT}$
  • Correspondingly, the percentage of power between  $0$  and  $5 \ µ\rm   s$  is
$$\frac{P_1}{P_1+ P_2} = \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.$$

The figure shows  ${\it \Phi}_{\rm V}(\tau)$  in linear scale.  The areas  $P_1$  and  $P_2$  are labeled.

  • The left graph is for  ${\rm BU}$, the right graph is for  ${\rm HT}$.
  • For the latter, the power percentage of all later echoes  $($later than  $15 \ \rm µ s)$  is only about  $12\%$.


(7)  The area of the entire power-spectral density gives  $P = 1.5 \cdot \phi_0 \cdot \tau_0$.

Delay PDF of profile  ${\rm BU}$
  • Normalizing  ${\it \Phi}_{\rm V}(\tau)$  to this value yields the probability density function  $f_{\rm V}(\tau)$, as shown in the graph on the right (left diagram).
  • With  $\tau_0 = 1 \ \ \rm µ s$  and  $\tau_5 = 5 \ \ \rm µ s$, the mean is:
$$m_{\rm V}= \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau$$
$$\Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2}{3\tau_0} \cdot \int_{0}^{\tau_5} \tau \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau \ + $$
$$ \hspace{1.7cm}+\ \frac{1}{3\tau_0} \cdot \int_{\tau_5}^{\infty} \tau \cdot {\rm e}^{ (\tau_5 -\tau)/\tau_0}\hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}. $$
  • The first integral is equal to  $2\tau_0/3$  according to the provided expression.
  • With the substitution  $\tau' = \tau \, -\tau_5$  you finally obtain using the integral solutions given above:
$$m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau') \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' = \frac{2\tau_0}{3} + \frac{\tau_5}{3\tau_0} \cdot \int_{0}^{\infty} \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} \tau' \cdot \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' $$
$$\Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2\tau_0}{3} + \frac{\tau_5}{3}+ \frac{\tau_0}{3} = \tau_0 + \frac{\tau_5}{3} \hspace{0.15cm}\underline {\approx 2.667\,{\rm µ s}} \hspace{0.05cm}. $$
  • The variance  $\sigma_{\rm V}^2$  is equal to the second moment (mean of the square) of the zero-mean random variable  $\theta = \tau \, –m_{\rm V}$, whose PDF is shown in the right graph
  • From this  $T_{\rm V} = \sigma_{\rm V}$  can be specified.


A second possibility is to first calculate the mean square value of the random variable  $\tau$  and from this the variance  $\sigma_{\rm V}^2$  using Steiner's theorem.

  • With the substitutions and approximations already described above, one obtains
$$m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm} \frac{2}{3\tau_0} \cdot \int_{0}^{\infty} \tau^2 \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' $$
$$\Rightarrow \hspace{0.3cm}m_{\rm V2} = \frac{2}{3} \cdot \int_{0}^{\infty} \frac{\tau^2}{\tau_0} \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{\tau_5^2}{3} \cdot \int_{0}^{\infty} \frac{1}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' +\frac{2\tau_5}{3} \cdot \int_{0}^{\infty} \frac{\tau '}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3} \cdot \int_{0}^{\infty} \frac{{\tau '}^2}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' \hspace{0.05cm}. $$
  • With the integrals given above, we have
$$m_{\rm V2} \approx \frac{2}{3} \cdot 2 \tau_0^2 + \frac{\tau_5^2}{3} \cdot 1 + \frac{2\tau_5}{3} \cdot \tau_0 + \frac{1}{3} \cdot 2 \tau_0^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} $$
$$\Rightarrow \hspace{0.3cm} \sigma_{\rm V}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_{\rm V2} - m_{\rm V}^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} - (\tau_0 + \frac{\tau_5}{3})^2 =\tau_0^2 + \frac{2\tau_5^2}{9} = (1\,{\rm µ s})^2 + \frac{2\cdot (5\,{\rm µ s})^2}{9} = 6.55\,({\rm µ s})^2$$
$$\Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm µ s}}\hspace{0.05cm}.$$

The above graph shows the parameters  $T_{\rm V}$ and $\sigma_{\rm V}$.