Difference between revisions of "Aufgaben:Exercise 2.13: Quadrature Amplitude Modulation"

From LNTwww
m
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1055__Mod_A_2_11.png|right|frame|  $\rm QAM$ model under consideration]]
+
[[File:P_ID1055__Mod_A_2_11.png|right|frame|QAM model under consideration]]
The ''quadrature amplitude modulation''  $\rm (QAM)$  explained by the diagram allows the transmission of two source signals  $q_1(t)$  and  $q_2(t)$  over the same channel, under certain boundary conditions, which are to be determined in this task.
+
The  "quadrature amplitude modulation"  $\rm (QAM)$  explained by the diagram allows the transmission of two source signals  $q_1(t)$  and  $q_2(t)$  over the same channel  
 +
*under certain boundary conditions,  
 +
*which are to be determined in this exercise.
  
In this exercise, with  $A_1 = A_2 = 2\ \rm  V$, let:
+
 
 +
In this exercise,  with  $A_1 = A_2 = 2\ \rm  V$:
 
:$$q_1(t)  = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
 
:$$q_1(t)  = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
 
:$$q_2(t)  =  A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$
 
:$$q_2(t)  =  A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$
For  $ω_{\rm T} = 2π · 25\ \rm kHz$, the four carrier signals shown in the diagram are:
+
For  $ω_{\rm T} = 2π · 25\ \rm kHz$,  the four carrier signals shown in the diagram are:
 
:$$z_1(t)  =  \cos(\omega_{\rm T} \cdot t),$$
 
:$$z_1(t)  =  \cos(\omega_{\rm T} \cdot t),$$
 
:$$ z_2(t)  =  \sin(\omega_{\rm T} \cdot t),$$
 
:$$ z_2(t)  =  \sin(\omega_{\rm T} \cdot t),$$
 
:$$ z_{1,\hspace{0.05cm}{\rm E}}(t) =  2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
 
:$$ z_{1,\hspace{0.05cm}{\rm E}}(t) =  2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
 
:$$ z_{2,\hspace{0.05cm}{\rm E}}(t)  =  2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$
 
:$$ z_{2,\hspace{0.05cm}{\rm E}}(t)  =  2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$
Both lowpass filters   $\rm TP_1$  and  $\rm TP_2$  with input signals  $b_1(t)$  and  $b_2(t)$ , respectively, remove all frequency components  $|f| > f_{\rm T}$.
 
 
  
 +
Both lowpass filters   $\rm LP_1$  and  $\rm LP_2$  with input signals  $b_1(t)$  resp.  $b_2(t)$ , remove all frequency components  $|f| > f_{\rm T}$.
  
  
Line 22: Line 24:
  
  
''Hints:''
+
Hints:  
 
*This exercise belongs to the chapter  [[Modulation_Methods/Further_AM_Variants|Further AM Variants]].
 
*This exercise belongs to the chapter  [[Modulation_Methods/Further_AM_Variants|Further AM Variants]].
*Particular reference is made to the page  [[Modulation_Methods/Further_AM_Variants#Quadrature_Amplitude_Modulation_.28QAM.29|Quadrature Amplitude Modulation (QAM)]].
+
*Particular reference is made to the page  [[Modulation_Methods/Further_AM_Variants#Quadrature_Amplitude_Modulation_.28QAM.29|Quadrature Amplitude Modulation (QAM)]].  
 
 
*It is worth noting that the carrier signals  $z_2(t)$  and  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  are applied with positive signs here.  
 
*It is worth noting that the carrier signals  $z_2(t)$  and  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  are applied with positive signs here.  
*Often – as in the theory section – these carrier signals are given as "minus-sine".
+
*Often – as in the theory section – these carrier signals are given as  "minus-sine".
 
*The following trigonometric transformations are given:
 
*The following trigonometric transformations are given:
 
:$$ \cos(\alpha) \cdot \cos(\beta)  = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
 
:$$ \cos(\alpha) \cdot \cos(\beta)  = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
Line 44: Line 45:
 
- $s(t)$  is composed of four sine oscillations.
 
- $s(t)$  is composed of four sine oscillations.
  
{What is  $s(t)$  when  $f_1 = f_2 = 5 \ \rm kHz$.  What signal value arises for  $t = 50 \ \rm µ s$ ?
+
{What is  $s(t)$  with  $f_1 = f_2 = 5 \ \rm kHz$?  What signal value arises for  $t = 50 \ \rm µ s$ ?
 
|type="{}"}
 
|type="{}"}
 
$s(t = 50 \ \rm µ s) \ = \ $ { 2 3% } $\ \rm V$  
 
$s(t = 50 \ \rm µ s) \ = \ $ { 2 3% } $\ \rm V$  
Line 50: Line 51:
 
{Calculate the sink signals  $v_1(t)$  and  $v_2(t)$ for  $f_1 = f_2$  and  $Δϕ_{\rm T} = 0$  (no phase offset).  Which statements are true?
 
{Calculate the sink signals  $v_1(t)$  and  $v_2(t)$ for  $f_1 = f_2$  and  $Δϕ_{\rm T} = 0$  (no phase offset).  Which statements are true?
 
|type="()"}
 
|type="()"}
+   $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$ both hold.
+
+ $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$  both hold.
 
- Linear distortions occur.
 
- Linear distortions occur.
 
- Nonlinear distortions occur.
 
- Nonlinear distortions occur.
Line 56: Line 57:
 
{Calculate the sink signals  $v_1(t)$  and  $v_2(t)$  for  $f_1 = f_2$  and a phase offset  $Δϕ_{\rm T} = 30^\circ$.  Which statements are true?
 
{Calculate the sink signals  $v_1(t)$  and  $v_2(t)$  for  $f_1 = f_2$  and a phase offset  $Δϕ_{\rm T} = 30^\circ$.  Which statements are true?
 
|type="()"}
 
|type="()"}
-  $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$ both hold.
+
- $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$  both hold.
 
+ Linear distortions occur.
 
+ Linear distortions occur.
 
- Nonlinear distortions occur.
 
- Nonlinear distortions occur.
Line 62: Line 63:
 
{Which of the following statements apply when  $f_1 ≠ f_2$  and  $Δϕ_{\rm T} ≠ 0$   (with an arbitrary phase offset)?
 
{Which of the following statements apply when  $f_1 ≠ f_2$  and  $Δϕ_{\rm T} ≠ 0$   (with an arbitrary phase offset)?
 
|type="[]"}
 
|type="[]"}
-  $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$ both hold.
+
- $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$  both hold.
 
- Linear distortions occur.
 
- Linear distortions occur.
 
+ Nonlinear distortions occur.
 
+ Nonlinear distortions occur.

Revision as of 17:36, 18 February 2022

QAM model under consideration

The  "quadrature amplitude modulation"  $\rm (QAM)$  explained by the diagram allows the transmission of two source signals  $q_1(t)$  and  $q_2(t)$  over the same channel

  • under certain boundary conditions,
  • which are to be determined in this exercise.


In this exercise,  with  $A_1 = A_2 = 2\ \rm V$:

$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$

For  $ω_{\rm T} = 2π · 25\ \rm kHz$,  the four carrier signals shown in the diagram are:

$$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$
$$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$
$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$

Both lowpass filters   $\rm LP_1$  and  $\rm LP_2$  with input signals  $b_1(t)$  resp.  $b_2(t)$ , remove all frequency components  $|f| > f_{\rm T}$.



Hints:

  • This exercise belongs to the chapter  Further AM Variants.
  • Particular reference is made to the page  Quadrature Amplitude Modulation (QAM).
  • It is worth noting that the carrier signals  $z_2(t)$  and  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  are applied with positive signs here.
  • Often – as in the theory section – these carrier signals are given as  "minus-sine".
  • The following trigonometric transformations are given:
$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$


Questions

1

Calculate the transmitted signal  $s(t)$  in the case that  $f_1 ≠ f_2$.  Which of the following statements apply?

$s(t)$  is composed of two cosine and two sine oscillations.
$s(t)$  is composed of four cosine oscillations.
$s(t)$  is composed of four sine oscillations.

2

What is  $s(t)$  with  $f_1 = f_2 = 5 \ \rm kHz$?  What signal value arises for  $t = 50 \ \rm µ s$ ?

$s(t = 50 \ \rm µ s) \ = \ $

$\ \rm V$

3

Calculate the sink signals  $v_1(t)$  and  $v_2(t)$ for  $f_1 = f_2$  and  $Δϕ_{\rm T} = 0$  (no phase offset).  Which statements are true?

$v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$  both hold.
Linear distortions occur.
Nonlinear distortions occur.

4

Calculate the sink signals  $v_1(t)$  and  $v_2(t)$  for  $f_1 = f_2$  and a phase offset  $Δϕ_{\rm T} = 30^\circ$.  Which statements are true?

$v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$  both hold.
Linear distortions occur.
Nonlinear distortions occur.

5

Which of the following statements apply when  $f_1 ≠ f_2$  and  $Δϕ_{\rm T} ≠ 0$  (with an arbitrary phase offset)?

$v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$  both hold.
Linear distortions occur.
Nonlinear distortions occur.


Solution

(1)  With the given trigonometric transformations we get:

$$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$
$$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
  • The second answer is correct.


(2)  With $A_1 = A_2 = 2 \ \rm V$ and $f_1 = f_2 = 5\ \rm kHz$, the first and third cosine oscillations constructively overlap and the other two cancel completely.

  • Thus, the following simple result is obtained:
$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$


(3)  The first answer is correct:

  • For phase-synchronous demodulation  $(Δϕ_T = 0)$ , the signals before the low-pass filters according to subtask  (2) are obtained as:
$$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
$$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
  • Thus, after eliminating the respective   $45\ \rm kHz$ components, we get   $v_1(t) = q_1(t)$  and  $v_2(t) = q_2(t)$.


(4)  Analogously to subtask  (3)  it now holds that:

$$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
$$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
  • The sink signals  $v_1(t)$  and  $v_2(t)$  in this constellation exhibit delays and thus phase distortions compared with   $q_1(t)$  and  $q_2(t)$ .
  • These belong to the class of linear distortions   ⇒   Answer 2.


(5)  In general, it holds for the source signal that:

$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$

Multiplication by the receiver-side carrier signals  $z_{1,\hspace{0.05cm}{\rm E}}(t)$  and  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  and band-limiting leads to the signals

$$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
$$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$

From this it can be seen:

  • With a phase offset of   $Δϕ_{\rm T} = 30^\circ$ , the sink signal  $v_1(t)$  includes not only the signal   $q_1(t)$ attenuated by about   $\cos(30^\circ) = 0.866$ , but also the frequency   $f_2$ contained in   $q_2(t)$ .
  • This is weighted by the factor   $\sin(30^\circ) = 0.5$ .
  • Thus, nonlinear distortions are present   ⇒   Answer 3.