Difference between revisions of "Aufgaben:Exercise 4.12Z: 4-QAM Systems again"
m |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1724__Mod_Z_4_11.png|right|frame| | + | [[File:P_ID1724__Mod_Z_4_11.png|right|frame|Phase diagrams for 4–QAM, ideal and with degradations] |
− | + | Graph $\rm (A)$ shows the phase diagram of the 4-QAM after the matched filter, where an optimal realization form was chosen in the case of AWGN noise under the constraint of "peak limiting": | |
− | * | + | * rectangular fundamental transmision pulse of symbol duration $T$, |
− | * | + | * rectangular impulse response of the matched filter of the same width $T$. |
− | + | All phase diagrams presented here - both $\rm (A)$ and $\rm (B)$ and $\rm (C)$ - refer to the detection time points only. Thus, the transitions between the individual discrete-time points are not plotted in this phase diagram. | |
− | * | + | *An AWGN channel with $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$ is present. |
− | * | + | *Accordingly, for the bit error probability of the first system considered $\rm (A)$ : |
:$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$ | :$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$ | ||
− | + | Phase diagrams $\rm (B)$ and $\rm (C)$ belong to two systems where the 4-QAM was not optimally realized. AWGN noise with $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$ is also assumed in each of these. | |
Line 26: | Line 26: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Modulation_Methods/Quadrature_Amplitude_Modulation|Quadrature Amplitude Modulation]]. |
− | * | + | *Particular reference is made to the page [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Phase_offset_between_transmitter_and_receiver|Phase offset between transmitter and receiver]] in the book "Digital Signal Transmission". |
− | * | + | *Causes and Effects of impulse interference are explained in the [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|section with the same name]] of the book "Digital Signal Transmission". |
*Die Kreuze in den Grafiken markieren mögliche Punkte in den Phasendiagrammen, wenn kein AWGN–Rauschen vorhanden wäre. | *Die Kreuze in den Grafiken markieren mögliche Punkte in den Phasendiagrammen, wenn kein AWGN–Rauschen vorhanden wäre. | ||
*Die Punktwolken aufgrund des AWGN–Rauschens haben alle gleichen Durchmesser. Die rote Wolke erscheint nur deshalb etwas kleiner als die anderen, da "Rot" auf "Schwarz" schlechter zu erkennen ist. | *Die Punktwolken aufgrund des AWGN–Rauschens haben alle gleichen Durchmesser. Die rote Wolke erscheint nur deshalb etwas kleiner als die anderen, da "Rot" auf "Schwarz" schlechter zu erkennen ist. |
Revision as of 19:52, 19 March 2022
[[File:P_ID1724__Mod_Z_4_11.png|right|frame|Phase diagrams for 4–QAM, ideal and with degradations]
Graph $\rm (A)$ shows the phase diagram of the 4-QAM after the matched filter, where an optimal realization form was chosen in the case of AWGN noise under the constraint of "peak limiting":
- rectangular fundamental transmision pulse of symbol duration $T$,
- rectangular impulse response of the matched filter of the same width $T$.
All phase diagrams presented here - both $\rm (A)$ and $\rm (B)$ and $\rm (C)$ - refer to the detection time points only. Thus, the transitions between the individual discrete-time points are not plotted in this phase diagram.
- An AWGN channel with $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$ is present.
- Accordingly, for the bit error probability of the first system considered $\rm (A)$ :
- $$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$
Phase diagrams $\rm (B)$ and $\rm (C)$ belong to two systems where the 4-QAM was not optimally realized. AWGN noise with $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$ is also assumed in each of these.
Hints:
- This exercise belongs to the chapter Quadrature Amplitude Modulation.
- Particular reference is made to the page Phase offset between transmitter and receiver in the book "Digital Signal Transmission".
- Causes and Effects of impulse interference are explained in the section with the same name of the book "Digital Signal Transmission".
- Die Kreuze in den Grafiken markieren mögliche Punkte in den Phasendiagrammen, wenn kein AWGN–Rauschen vorhanden wäre.
- Die Punktwolken aufgrund des AWGN–Rauschens haben alle gleichen Durchmesser. Die rote Wolke erscheint nur deshalb etwas kleiner als die anderen, da "Rot" auf "Schwarz" schlechter zu erkennen ist.
- Als eine hinreichend gute Näherung für das komplementäre Gaußsche Fehlerintegral können Sie verwenden:
- $${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$
Fragebogen
Musterlösung
- Mit der angegebenen Näherung gilt weiter:
- $$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}} = {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {3.5 \cdot 10^{-5}\hspace{0.05cm}}.$$
- Der exakte Wert $p_{\rm B}\hspace{0.15cm}\underline { = 3.3 · 10^{–5}}$ ist nur geringfügig kleiner.
(2) Richtig ist der Lösungsvorschlag 1:
- Aufgrund eines Phasenversatzes um $Δϕ_{\rm T} = 30^\circ$ wurde das Phasendiagramm gedreht, was zu einer Degradation führt.
- Die beiden Komponenten $\rm I$ und $\rm Q$ beeinflussen sich zwar gegenseitig, es gibt aber keine Impulsinterferenzen wie bei System $\rm (C)$.
- Ein "Nyquistsystem" führt niemals zu Impulsinterferenzen.
(3) Richtig ist der Lösungsvorschlag 2:
- Insbesondere an den jeweils neun Kreuzen in jedem Quadranten des Phasendiagramms $\rm (C)$, die den rauschfreien Fall markieren, erkennt man den Einfluss von Impulsinterferenzen.
- Anstelle des optimalen Empfangsfilters für rechteckförmigem Sendegrundimpuls $g_s(t)$ ⇒ rechteckförmige Impulsantwort $h_{\rm E}(t)$ wurde hier ein Gaußtiefpass mit der (normierten) Grenzfrequenz $f_{\rm G} · T = 0.6$ verwendet.
- Dieser bewirkt Impulsinterferenzen. Auch ohne Rauschen gibt es in jedem Quadranten neun Kreuze, die auf je einen Vor– und Nachläufer pro Komponente hinweisen.
(4) Richtig sind die Lösungsvorschläge 2 und 3:
- Die Systeme $\rm (B)$ und $\rm (C)$ sind nicht optimal. Daraus ist bereits ersichtlich, dass die Aussage 1 nicht zutrifft.
- Dagegen ist die Aussage 2 richtig. Jedes 4–QAM–System, das dem Matched–Filter–Prinzip folgt und zusätzlich die erste Nyquistbedingung erfüllt, besitzt die vorne angegebene Fehlerwahrscheinlichkeit
- $$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
- Die so genannte „Wurzel–Nyquist–Konfiguration”, die zum Beispiel in der Aufgabe 4.12 behandelt wurde, hat somit die genau gleiche Fehlerwahrscheinlichkeit wie das System $\rm (A)$ und zu den Detektionszeitpunkten auch das gleiche Phasendiagramm. Die Übergänge zwischen den einzelnen Punkten sind jedoch unterschiedlich.
- Auch die dritte Aussage ist zutreffend. Man erkennt bereits aus dem Phasendiagramm von System $\rm (B)$ Fehlentscheidungen und zwar immer dann, wenn Punkte farblich nicht zu den Quadranten passen.
Die Fehlerwahrscheinlichkeiten von System $\rm (B)$ und System $\rm (C)$ werden im Buch „Digitalsignalübertragung” hergeleitet. Die Ergebnisse einer Systemsimulation bestätigen die obigen Aussagen:
- System $\rm (A)$: $p_{\rm B} ≈ 3.3 · 10^{–5}$ (siehe Teilaufgabe 1),
- System $\rm (B)$: $p_{\rm B} ≈ 3.5 · 10^{–2}$,
- System $\rm (C)$: $p_{\rm B} ≈ 2.4 · 10^{–4}$.