Difference between revisions of "Aufgaben:Exercise 4.14Z: Offset QPSK vs. MSK"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“)
 
m
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren
+
{{quiz-Header|Buchseite=Modulationsverfahren/Nichtlineare_digitale_Modulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1742__Mod_Z_4_13.png|right|frame|Koeffizientenzuordnung bei O-QPSK und MSK]]
 +
One possible implementation fordie&nbsp; $\rm MSK$&nbsp; is offered by&nbsp; "Offset–QPSK"&nbsp; $\rm (O–QPSK)$, as can be seen from the &nbsp;[[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|block diagrams]]&nbsp; in the theory section.
  
 +
In "normal offset QPSK operation", two bits of the source symbol sequence&nbsp;$〈q_k〉$&nbsp;are assigned to one bit 𝑎Iν&nbsp;$a_{{\rm I}ν}$&nbsp; in the in-phase branch and one bit &nbsp;$a_{{\rm Q}ν}$&nbsp; in the quadrature branch, respectively.
  
===Fragebogen===
+
The graph shows this serial-to-parallel conversion in the top three plots for the first four bits of the source signal &nbsp;$q(t)$.&nbsp; It should be noted:
 +
* The Offset–QPSK plot is for for a rectangular-shaped fundamental pulse.&nbsp; The coefficients &nbsp;$a_{{\rm I}ν}$&nbsp; and &nbsp;$a_{{\rm Q}ν}$&nbsp;  can take the values &nbsp;$±1$&nbsp;.
 +
* If the time index of the source symbols passes through the values &nbsp;$k =1,$ ... $, 8$, then the time variable &nbsp;$ν$&nbsp; only takes on the values &nbsp;$1,$ ... $, 4$&nbsp; an.
 +
* The sketch also takes the time offset for the quadrature branch into account.
 +
 
 +
 
 +
For a&nbsp; "MSK–implementation using Offset–QPSK"&nbsp; a recoding is required.&nbsp; Here, with &nbsp;$q_k ∈ \{+1, –1\}$&nbsp; and &nbsp;$a_k ∈ \{+1, –1\}$, it holds that:
 +
:$$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.$$
 +
For example, by assuming &nbsp;$a_0 = +1$ one gets:
 +
:$$a_1 =  a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm}
 +
a_3  =  a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$
 +
Additionally, one must take into account:
 +
* The coefficients &nbsp;$a_0 = +1$, &nbsp;$a_2 = +1$, &nbsp;$a_4 = -1$&nbsp; and the coefficients &nbsp;$a_6$&nbsp; and &nbsp;$a_8$&nbsp; which are yet to be calculated, are assigned to the signal &nbsp;$s_{\rm I}(t)$&nbsp;.
 +
* On the other hand, the coefficients &nbsp;$a_1 = +1$&nbsp; and &nbsp;$a_3 = -1$&nbsp; as well as all other coefficients with an odd index are applied to the signal &nbsp;$s_{\rm Q}(t)$&nbsp;.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the section&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 +
 +
*The associated phase function &nbsp;$ϕ(t)$&nbsp; is determined in &nbsp;[[Aufgaben:Exercise_4.14:_Phase_Progression_of_the_MSK |Exercise 4.14]]&nbsp;, and is also based on the&nbsp; (normalized)&nbsp; MSK fundamental pulse:
 +
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}$$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the bit duration &nbsp;$T_{\rm B}$&nbsp; of the source signal?
|type="[]"}
+
|type="{}"}
- Falsch
+
$T_{\rm B} \ = \ $ { 1 3% } $\ \rm &micro; s$
+ Richtig
+
 
 +
 
 +
{What is the symbol duration &nbsp;$T$&nbsp; of the offset QPSK?
 +
|type="{}"}
 +
$T \ = \ $ { 2 3%  } $\ \rm  &micro; s$
  
 +
{Give the above amplitude coefficients of the offset QPSK.
 +
|type="{}"}
 +
$a_{\rm I3} \hspace{0.25cm} = \ $ { 1 3% }
 +
$a_{\rm Q3} \ = \ $ { 1 3% }
 +
$a_{\rm I4} \hspace{0.25cm} = \ $ { -1.03--0.97 }
 +
$a_{\rm Q4} \ = \ $ { 1 3% }
  
{Input-Box Frage
+
{What is the symbol duration &nbsp;$T$&nbsp; of the &nbsp;MSK?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$T \ = \ $ { 1 3% } $\ \rm &micro; s$
  
 +
{Give the above amplitude coefficients of the MSK.
 +
|type="{}"}
 +
$a_5 \ = \ $ { -1.03--0.97 }
 +
$a_6 \ = \ $ { 1 3% }
 +
$a_7 \ = \ $ { -1.03--0.97 }
 +
$a_8 \ = \ $ { 1 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; It can be seen from the upper plot that &nbsp; $T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm &micro; s}$&nbsp;.
'''2.'''
+
 
'''3.'''
+
 
'''4.'''
+
'''(2)'''&nbsp; For QPSK or offset QPSK , the symbol duration $T$&nbsp; is twice the bit duration&nbsp;  $T_{\rm B}$ due to serial-to-parallel conversion:
'''5.'''
+
:$$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm &micro;  s}} \hspace{0.05cm}.$$
'''6.'''
+
 
'''7.'''
+
 
 +
'''(3)'''&nbsp; According to the allocation evident in the plot for the first bits:
 +
:$$ a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},$$
 +
:$$a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$
 +
:$$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},$$
 +
:$$a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; In MSK, the symbol duration&nbsp; $T$&nbsp;is equal to the bit duration &nbsp; $T_{\rm B}$:
 +
:$$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm &micro;  s}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; According to the given recoding rule, when &nbsp; $a_4 = –1$, we get:
 +
:$$q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$
 +
:$$q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$
 +
:$$ q_7 = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$
 +
:$$q_8 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare Modulationsverfahren^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 16:49, 21 March 2022

Koeffizientenzuordnung bei O-QPSK und MSK

One possible implementation fordie  $\rm MSK$  is offered by  "Offset–QPSK"  $\rm (O–QPSK)$, as can be seen from the  block diagrams  in the theory section.

In "normal offset QPSK operation", two bits of the source symbol sequence $〈q_k〉$ are assigned to one bit 𝑎Iν $a_{{\rm I}ν}$  in the in-phase branch and one bit  $a_{{\rm Q}ν}$  in the quadrature branch, respectively.

The graph shows this serial-to-parallel conversion in the top three plots for the first four bits of the source signal  $q(t)$.  It should be noted:

  • The Offset–QPSK plot is for for a rectangular-shaped fundamental pulse.  The coefficients  $a_{{\rm I}ν}$  and  $a_{{\rm Q}ν}$  can take the values  $±1$ .
  • If the time index of the source symbols passes through the values  $k =1,$ ... $, 8$, then the time variable  $ν$  only takes on the values  $1,$ ... $, 4$  an.
  • The sketch also takes the time offset for the quadrature branch into account.


For a  "MSK–implementation using Offset–QPSK"  a recoding is required.  Here, with  $q_k ∈ \{+1, –1\}$  and  $a_k ∈ \{+1, –1\}$, it holds that:

$$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.$$

For example, by assuming  $a_0 = +1$ one gets:

$$a_1 = a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm} a_3 = a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$

Additionally, one must take into account:

  • The coefficients  $a_0 = +1$,  $a_2 = +1$,  $a_4 = -1$  and the coefficients  $a_6$  and  $a_8$  which are yet to be calculated, are assigned to the signal  $s_{\rm I}(t)$ .
  • On the other hand, the coefficients  $a_1 = +1$  and  $a_3 = -1$  as well as all other coefficients with an odd index are applied to the signal  $s_{\rm Q}(t)$ .






Hints:

  • The associated phase function  $ϕ(t)$  is determined in  Exercise 4.14 , and is also based on the  (normalized)  MSK fundamental pulse:
$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}$$


Questions

1

What is the bit duration  $T_{\rm B}$  of the source signal?

$T_{\rm B} \ = \ $

$\ \rm µ s$

2

What is the symbol duration  $T$  of the offset QPSK?

$T \ = \ $

$\ \rm µ s$

3

Give the above amplitude coefficients of the offset QPSK.

$a_{\rm I3} \hspace{0.25cm} = \ $

$a_{\rm Q3} \ = \ $

$a_{\rm I4} \hspace{0.25cm} = \ $

$a_{\rm Q4} \ = \ $

4

What is the symbol duration  $T$  of the  MSK?

$T \ = \ $

$\ \rm µ s$

5

Give the above amplitude coefficients of the MSK.

$a_5 \ = \ $

$a_6 \ = \ $

$a_7 \ = \ $

$a_8 \ = \ $


Solution

(1)  It can be seen from the upper plot that   $T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm µ s}$ .


(2)  For QPSK or offset QPSK , the symbol duration $T$  is twice the bit duration  $T_{\rm B}$ due to serial-to-parallel conversion:

$$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm µ s}} \hspace{0.05cm}.$$


(3)  According to the allocation evident in the plot for the first bits:

$$ a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},$$
$$a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$
$$a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},$$
$$a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.$$


(4)  In MSK, the symbol duration  $T$ is equal to the bit duration   $T_{\rm B}$:

$$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm µ s}} \hspace{0.05cm}.$$


(5)  According to the given recoding rule, when   $a_4 = –1$, we get:

$$q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},$$
$$q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},$$
$$ q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1}, $$
$$q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.$$