Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.14Z: Offset QPSK vs. MSK"

From LNTwww
m
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren
+
{{quiz-Header|Buchseite=Modulationsverfahren/Nichtlineare_digitale_Modulation
 
}}
 
}}
  
[[File:P_ID1742__Mod_Z_4_13.png|right|]]
+
[[File:P_ID1742__Mod_Z_4_13.png|right|frame|Koeffizientenzuordnung bei O-QPSK und MSK]]
Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK (kurz: O–QPSK), wie aus den [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren#Realisierung_der_MSK_als_Offset.E2.80.93QPSK_.281.29 Blockschaltbildern] im Theorieteil hervorgeht.
+
One possible implementation fordie  $\rm MSK$  is offered by  "Offset–QPSK"  $\rm (O–QPSK)$, as can be seen from the  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|block diagrams]]  in the theory section.
  
Beim normalen O–QPSK–Betrieb werden jeweils zwei Bit der Quellensymbolfolge 〈$q_k$〉 einem Bit $a_{}$ im Inphasezweig und sowie einem Bit $a_{}$ im Quadraturzweig zugeordnet.
+
In "normal offset QPSK operation", two bits of the source symbol sequence $〈q_k〉$ are assigned to one bit 𝑎Iν $a_{{\rm I}ν}$  in the in-phase branch and one bit  $a_{{\rm Q}ν}$  in the quadrature branch, respectively.  
  
Die Grafik zeigt diese Seriell–Parallel–Wandlung in den drei oberen Diagrammen für die ersten vier Bit des grün gezeichneten Quellensignals. Dabei ist zu beachten:
+
The graph shows this serial-to-parallel conversion in the top three plots for the first four bits of the source signal  q(t).  It should be noted:
:* Die Darstellung der O–QPSK gilt für einen rechteckigen Grundimpuls. Mögliche Werte der Koeffizienten $a_{}$ und $a_{}$ sind ±1.
+
* The Offset–QPSK plot is for for a rectangular-shaped fundamental pulse.  The coefficients  $a_{{\rm I}ν}$  and  $a_{{\rm Q}ν}$   can take the values  $±1$ .
:* Durchläuft der Index k der Quellensymbole die Werte 1 bis 8, so nimmt die Variable ν nur die Werte 1 ... 4 an.
+
* If the time index of the source symbols passes through the values  $k =1,..., 8$, then the time variable  $ν  only takes on the values  1,$ ... $, 4$  an.
:* Die Skizze berücksichtigt den Zeitversatz (Offset) für den Quadraturzweig.
+
* The sketch also takes the time offset for the quadrature branch into account.
  
Bei der MSK–Realisierung mittels O–QPSK ist eine Umcodierung erforderlich. Hierbei gilt mit qk ∈ {+1, –1} und ak ∈ {+1, –1}:
 
ak=(1)k+1ak1qk.
 
Beispielsweise erhält man unter der Annahme a0=+1:
 
a1=a0q1=+1,a2=a1q2=+1,
 
a3=a2q3=1,a4=a3q4=1.
 
Weiter ist zu berücksichtigen:
 
:* Die Koeffizienten a0=+1, a2=+1, a_4 = –1 sowie die noch zu berechnenden Koeffizienten a6 und a8 werden dem Signal s_I(t) zugeordnet.
 
:* Dagegen werden die Koeffizienten a_1 = +1 und a_3 = –1 sowie alle weiteren Koeffizienten mit ungeradem Index dem Signal sQ(t) beaufschlagt.
 
  
''' Hinweis:''' Die Aufgabe gehört zu [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren Kapitel 4.4]. In [http://en.lntwww.de/Aufgaben:4.13_Phasenverlauf_der_MSK Aufgabe A4.13] wird die zugehörige Phasenfunktion $ϕ(t)$ ermittelt, wobei wiederum der (auf 1 normierte) MSK–Grundimpuls zugrunde gelegt wird:
+
For a  "MSK–implementation using Offset–QPSK"  a recoding is required.  Here, with  q_k ∈ \{+1, –1\}  and  $a_k ∈ \{+1, –1\}$, it holds that:
$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}. \\ \end{array}$$
+
:$$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.$$
 +
For example, by assuming  a_0 = +1 one gets:
 +
:$$a_1 =  a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm}
 +
a_3  =  a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$
 +
Additionally, one must take into account:
 +
* The coefficients  a_0 = +1,  a_2 = +1,  a_4 = -1  and the coefficients  a_6  and  a_8  which are yet to be calculated, are assigned to the signal  $s_{\rm I}(t)$ .
 +
* On the other hand, the coefficients  a_1 = +1  and  a_3 = -1  as well as all other coefficients with an odd index are applied to the signal  $s_{\rm Q}(t)$ .
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
 +
*Particular reference is made to the section  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 +
 +
*The associated phase function  ϕ(t)  is determined in  [[Aufgaben:Exercise_4.14:_Phase_Progression_of_the_MSK |Exercise 4.14]] , and is also based on the  (normalized)  MSK fundamental pulse:
 +
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}$$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Bitdauer des Quellensignals?
+
{What is the bit duration &nbsp;T_{\rm B}&nbsp; of the source signal?
 
|type="{}"}
 
|type="{}"}
$T_B$ = { 1 3% } $μs$
+
$T_{\rm B} \ = \ { 1 3% } \ \rm &micro; s$
  
  
{Wie groß ist die Symboldauer der Offset–QPSK?
+
{What is the symbol duration &nbsp;T&nbsp; of the offset QPSK?
 
|type="{}"}
 
|type="{}"}
$O–QPSK:  T$ = { 2 3%  } $μs$  
+
$T \ = \ { 2 3%  } \ \rm  &micro; s$
  
{Geben Sie nachfolgende Amplitudenkoeffizienten der Offset–QPSK an.
+
{Give the above amplitude coefficients of the offset QPSK.
 
|type="{}"}
 
|type="{}"}
$O–QPSK:  a_{I3}$ = { 1 3% }  
+
$a_{\rm I3} \hspace{0.25cm} = \ $ { 1 3% }  
a_{Q3} = { 1 3% }
+
$a_{\rm Q3} \ = \ $ { 1 3% }
a_{I4} = { -1 3% }
+
$a_{\rm I4} \hspace{0.25cm} = \ $ { -1.03--0.97 }
a_{Q4} = { +1 3% }
+
$a_{\rm Q4} \ = \ $ { 1 3% }
  
{Wie groß ist die Symboldauer der MSK?
+
{What is the symbol duration &nbsp;T&nbsp; of the &nbsp;MSK?
 
|type="{}"}
 
|type="{}"}
$MSK:  T$ = { 1 3% } $μs$  
+
$T \ = \ { 1 3% } \ \rm &micro; s$
  
{Geben Sie die nachfolgenden Amplitudenkoeffizienten der MSK an.
+
{Give the above amplitude coefficients of the MSK.
 
|type="{}"}
 
|type="{}"}
$ MSK:  a_5$ = { -1 3% }
+
$a_5 \ = \ $ { -1.03--0.97 }
a_6 = { 1 3% }  
+
$a_6 \ = \ $ { 1 3% }  
a_7 = { -1 3% }  
+
$a_7 \ = \ $ { -1.03--0.97 }  
a_8 = { 1 3% }  
+
$a_8 \ = \ $ { 1 3% }  
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Aus der oberen Skizze kann man $T_B = 1 μs$ ablesen.
+
'''(1)'''&nbsp; It can be seen from the upper plot that &nbsp; T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm &micro; s}&nbsp;.
 +
 
 +
 
 +
'''(2)'''&nbsp; For QPSK or offset QPSK , the symbol duration T&nbsp; is twice the bit duration&nbsp;  T_{\rm B} due to serial-to-parallel conversion:
 +
:$$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm &micro;  s}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; According to the allocation evident in the plot for the first bits:
 +
:$$ a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},$$
 +
:$$a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},$$
 +
:a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},
 +
:a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.
 +
 
  
'''2.''' Bei QPSK bzw. Offset–QPSK ist aufgrund der Seriell–Parallel–Wandlung die Symboldauer T doppelt so groß wie die Bitdauer:
+
'''(4)'''&nbsp; In MSK, the symbol duration&nbsp; $T&nbsp;is equal to the bit duration &nbsp; T_{\rm B}$:
$$ T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm \mu s}} \hspace{0.05cm}.$$
+
:$$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm &micro;  s}} \hspace{0.05cm}.$$
  
'''3.'''  Entsprechend der aus der Skizze für die ersten Bit erkennbaren Zuordnung gilt:
 
a_{\rm I3} = q_5  \hspace{0.15cm}\underline {= +1},\hspace{0.2cm}a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},
 
a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},\hspace{0.2cm}a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.
 
  
'''4.''' Bei der MSK ist die Symboldauer T gleich der Bitdauer:
+
'''(5)'''&nbsp; According to the given recoding rule, when &nbsp; a_4 = –1, we get:
$$T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm \mu s}} \hspace{0.05cm}.$$
+
:q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},  
'''5.'''  Entsprechend der angegebenen Umcodiervorschrift gilt mit a_4 = –1:
+
:q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
q_5 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},  
+
: q_7 = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1},  
q_6 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
+
:q_8 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.
q_7 = -1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1},  
 
q_8 = +1 \hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 81: Line 104:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare Modulationsverfahren^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 17:49, 21 March 2022

Koeffizientenzuordnung bei O-QPSK und MSK

One possible implementation fordie  \rm MSK  is offered by  "Offset–QPSK"  \rm (O–QPSK), as can be seen from the  block diagrams  in the theory section.

In "normal offset QPSK operation", two bits of the source symbol sequence 〈q_k〉 are assigned to one bit 𝑎Iν a_{{\rm I}ν}  in the in-phase branch and one bit  a_{{\rm Q}ν}  in the quadrature branch, respectively.

The graph shows this serial-to-parallel conversion in the top three plots for the first four bits of the source signal  q(t).  It should be noted:

  • The Offset–QPSK plot is for for a rectangular-shaped fundamental pulse.  The coefficients  a_{{\rm I}ν}  and  a_{{\rm Q}ν}  can take the values  ±1 .
  • If the time index of the source symbols passes through the values  k =1, ... , 8, then the time variable  ν  only takes on the values  1, ... , 4  an.
  • The sketch also takes the time offset for the quadrature branch into account.


For a  "MSK–implementation using Offset–QPSK"  a recoding is required.  Here, with  q_k ∈ \{+1, –1\}  and  a_k ∈ \{+1, –1\}, it holds that:

a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.

For example, by assuming  a_0 = +1 one gets:

a_1 = a_0 \cdot q_1 = +1,\hspace{0.4cm}a_2 = -a_1 \cdot q_2 = +1,\hspace{0.4cm} a_3 = a_2 \cdot q_3 = -1,\hspace{0.4cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.

Additionally, one must take into account:

  • The coefficients  a_0 = +1,  a_2 = +1,  a_4 = -1  and the coefficients  a_6  and  a_8  which are yet to be calculated, are assigned to the signal  s_{\rm I}(t) .
  • On the other hand, the coefficients  a_1 = +1  and  a_3 = -1  as well as all other coefficients with an odd index are applied to the signal  s_{\rm Q}(t) .






Hints:

  • The associated phase function  ϕ(t)  is determined in  Exercise 4.14 , and is also based on the  (normalized)  MSK fundamental pulse:
g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\pi/2 \cdot t/T ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{otherwise}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm }. \\ \end{array}


Questions

1

What is the bit duration  T_{\rm B}  of the source signal?

T_{\rm B} \ = \

\ \rm µ s

2

What is the symbol duration  T  of the offset QPSK?

T \ = \

\ \rm µ s

3

Give the above amplitude coefficients of the offset QPSK.

a_{\rm I3} \hspace{0.25cm} = \

a_{\rm Q3} \ = \

a_{\rm I4} \hspace{0.25cm} = \

a_{\rm Q4} \ = \

4

What is the symbol duration  T  of the  MSK?

T \ = \

\ \rm µ s

5

Give the above amplitude coefficients of the MSK.

a_5 \ = \

a_6 \ = \

a_7 \ = \

a_8 \ = \


Solution

(1)  It can be seen from the upper plot that   T_{\rm B} \hspace{0.15cm}\underline{ = 1 \ \rm µ s} .


(2)  For QPSK or offset QPSK , the symbol duration T  is twice the bit duration  T_{\rm B} due to serial-to-parallel conversion:

T = 2 \cdot T_{\rm B} \hspace{0.15cm}\underline {= 2\,{\rm µ s}} \hspace{0.05cm}.


(3)  According to the allocation evident in the plot for the first bits:

a_{\rm I3} = q_5 \hspace{0.15cm}\underline {= +1},
a_{\rm Q3} = q_6 \hspace{0.15cm}\underline {= +1},
a_{\rm I4} = q_7 \hspace{0.15cm}\underline { = -1},
a_{\rm Q4} = q_8 \hspace{0.15cm}\underline {= +1} \hspace{0.05cm}.


(4)  In MSK, the symbol duration  T is equal to the bit duration   T_{\rm B}:

T = T_{\rm B}\hspace{0.15cm}\underline { = 1\,{\rm µ s}} \hspace{0.05cm}.


(5)  According to the given recoding rule, when   a_4 = –1, we get:

q_5 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_5 = a_4 \cdot q_5 \hspace{0.15cm}\underline {= -1},
q_6 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_6 = -a_5 \cdot q_6 \hspace{0.15cm}\underline {= +1},
q_7 = -1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_7 = a_6 \cdot q_7 \hspace{0.15cm}\underline {= -1},
q_8 = +1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_8 = -a_7 \cdot q_8\hspace{0.15cm}\underline { = +1}\hspace{0.05cm}.