Difference between revisions of "Aufgaben:Exercise 2.13: Quadrature Amplitude Modulation"
m |
m |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation Methods/Further AM Variants |
}} | }} | ||
− | [[File: | + | [[File:EN_Mod_A_2_11.png|right|frame|QAM model under consideration]] |
− | The | + | The "quadrature amplitude modulation" $\rm (QAM)$ explained by the diagram allows the transmission of two source signals $q_1(t)$ and $q_2(t)$ over the same channel |
+ | *under certain boundary conditions, | ||
+ | *which are to be determined in this exercise. | ||
− | In this exercise, with $A_1 = A_2 = 2\ \rm V$ | + | |
+ | In this exercise, with $A_1 = A_2 = 2\ \rm V$: | ||
:$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$ | :$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$ | ||
:$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$ | :$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$ | ||
− | For $ω_{\rm T} = 2π · 25\ \rm kHz$, the four carrier signals shown in the diagram are: | + | For $ω_{\rm T} = 2π · 25\ \rm kHz$, the four carrier signals shown in the diagram are: |
:$$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$ | :$$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$ | ||
:$$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$ | :$$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$ | ||
:$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$ | :$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$ | ||
:$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$ | :$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$ | ||
− | |||
+ | Both lowpass filters $\rm LP_1$ and $\rm LP_2$ with input signals $b_1(t)$ resp. $b_2(t)$ , remove all frequency components $|f| > f_{\rm T}$. | ||
Line 21: | Line 24: | ||
− | + | Hints: | |
− | |||
*This exercise belongs to the chapter [[Modulation_Methods/Further_AM_Variants|Further AM Variants]]. | *This exercise belongs to the chapter [[Modulation_Methods/Further_AM_Variants|Further AM Variants]]. | ||
− | *Particular reference is made to the page [[Modulation_Methods/Further_AM_Variants#Quadrature_Amplitude_Modulation_.28QAM.29|Quadrature Amplitude Modulation (QAM)]]. | + | *Particular reference is made to the page [[Modulation_Methods/Further_AM_Variants#Quadrature_Amplitude_Modulation_.28QAM.29|Quadrature Amplitude Modulation (QAM)]]. |
− | |||
*It is worth noting that the carrier signals $z_2(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ are applied with positive signs here. | *It is worth noting that the carrier signals $z_2(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ are applied with positive signs here. | ||
− | *Often – as in the theory section – these carrier signals are given as "minus-sine". | + | *Often – as in the theory section – these carrier signals are given as "minus-sine". |
*The following trigonometric transformations are given: | *The following trigonometric transformations are given: | ||
:$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$ | :$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$ | ||
Line 44: | Line 45: | ||
- $s(t)$ is composed of four sine oscillations. | - $s(t)$ is composed of four sine oscillations. | ||
− | {What is $s(t)$ | + | {What is $s(t)$ with $f_1 = f_2 = 5 \ \rm kHz$? What signal value arises for $t = 50 \ \rm µ s$ ? |
|type="{}"} | |type="{}"} | ||
$s(t = 50 \ \rm µ s) \ = \ $ { 2 3% } $\ \rm V$ | $s(t = 50 \ \rm µ s) \ = \ $ { 2 3% } $\ \rm V$ | ||
Line 50: | Line 51: | ||
{Calculate the sink signals $v_1(t)$ and $v_2(t)$ for $f_1 = f_2$ and $Δϕ_{\rm T} = 0$ (no phase offset). Which statements are true? | {Calculate the sink signals $v_1(t)$ and $v_2(t)$ for $f_1 = f_2$ and $Δϕ_{\rm T} = 0$ (no phase offset). Which statements are true? | ||
|type="()"} | |type="()"} | ||
− | + | + | + $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$ both hold. |
- Linear distortions occur. | - Linear distortions occur. | ||
- Nonlinear distortions occur. | - Nonlinear distortions occur. | ||
Line 56: | Line 57: | ||
{Calculate the sink signals $v_1(t)$ and $v_2(t)$ for $f_1 = f_2$ and a phase offset $Δϕ_{\rm T} = 30^\circ$. Which statements are true? | {Calculate the sink signals $v_1(t)$ and $v_2(t)$ for $f_1 = f_2$ and a phase offset $Δϕ_{\rm T} = 30^\circ$. Which statements are true? | ||
|type="()"} | |type="()"} | ||
− | - | + | - $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$ both hold. |
+ Linear distortions occur. | + Linear distortions occur. | ||
- Nonlinear distortions occur. | - Nonlinear distortions occur. | ||
{Which of the following statements apply when $f_1 ≠ f_2$ and $Δϕ_{\rm T} ≠ 0$ (with an arbitrary phase offset)? | {Which of the following statements apply when $f_1 ≠ f_2$ and $Δϕ_{\rm T} ≠ 0$ (with an arbitrary phase offset)? | ||
− | |type=" | + | |type="()"} |
− | - | + | - $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$ both hold. |
- Linear distortions occur. | - Linear distortions occur. | ||
+ Nonlinear distortions occur. | + Nonlinear distortions occur. | ||
Line 70: | Line 71: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' With the given trigonometric transformations we get: |
:$$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$ | :$$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$ | ||
:$$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + | :$$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + | ||
\frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$ | \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$ | ||
− | * | + | *The <u>second answer</u> is correct. |
− | '''(2)''' | + | '''(2)''' With $A_1 = A_2 = 2 \ \rm V$ and $f_1 = f_2 = 5\ \rm kHz$, the first and third cosine oscillations constructively overlap and the other two cancel completely. |
− | * | + | *Thus, the following simple result is obtained: |
:$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$ | :$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' The <u>first answer</u> is correct: |
− | * | + | *For phase-synchronous demodulation $(Δϕ_T = 0)$, the signals before the low-pass filters according to subtask '''(2)''' are obtained as: |
:$$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$ | :$$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$ | ||
:$$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$ | :$$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$ | ||
− | * | + | *Thus, after eliminating the respective $45\ \rm kHz$ components, we get $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$. |
− | '''(4)''' | + | '''(4)''' Analogously to subtask '''(3)''' it now holds that: |
:$$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= | :$$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= | ||
2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$ | 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$ | ||
:$$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= | :$$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= | ||
2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$ | 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$ | ||
− | * | + | *The sink signals $v_1(t)$ and $v_2(t)$ in this constellation exhibit delays and thus phase distortions compared with $q_1(t)$ and $q_2(t)$. |
− | * | + | *These belong to the class of linear distortions ⇒ <u>Answer 2</u>. |
− | '''(5)''' | + | '''(5)''' In general, it holds for the received signal: |
:$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | :$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | ||
− | + | Multiplication by the receiver-side carrier signals $z_{1,\hspace{0.05cm}{\rm E}}(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ and band-limiting leads to the signals | |
:$$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$ | :$$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$ | ||
:$$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$ | :$$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$ | ||
− | + | From this it can be seen: | |
− | * | + | *With a phase offset of $Δϕ_{\rm T} = 30^\circ$, the sink signal $v_1(t)$ includes not only the signal $q_1(t)$ attenuated by about $\cos(30^\circ) = 0.866$, <br>but also the frequency $f_2$ is contained in $q_2(t)$. |
− | * | + | *This is weighted by the factor $\sin(30^\circ) = 0.5$. |
− | + | *Thus, nonlinear distortions are present ⇒ <u>Answer 3</u>. | |
{{ML-Fuß}} | {{ML-Fuß}} |
Latest revision as of 15:27, 9 April 2022
The "quadrature amplitude modulation" $\rm (QAM)$ explained by the diagram allows the transmission of two source signals $q_1(t)$ and $q_2(t)$ over the same channel
- under certain boundary conditions,
- which are to be determined in this exercise.
In this exercise, with $A_1 = A_2 = 2\ \rm V$:
- $$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
- $$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$
For $ω_{\rm T} = 2π · 25\ \rm kHz$, the four carrier signals shown in the diagram are:
- $$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$
- $$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$
- $$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
- $$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$
Both lowpass filters $\rm LP_1$ and $\rm LP_2$ with input signals $b_1(t)$ resp. $b_2(t)$ , remove all frequency components $|f| > f_{\rm T}$.
Hints:
- This exercise belongs to the chapter Further AM Variants.
- Particular reference is made to the page Quadrature Amplitude Modulation (QAM).
- It is worth noting that the carrier signals $z_2(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ are applied with positive signs here.
- Often – as in the theory section – these carrier signals are given as "minus-sine".
- The following trigonometric transformations are given:
- $$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Questions
Solution
- $$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$
- $$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
- The second answer is correct.
(2) With $A_1 = A_2 = 2 \ \rm V$ and $f_1 = f_2 = 5\ \rm kHz$, the first and third cosine oscillations constructively overlap and the other two cancel completely.
- Thus, the following simple result is obtained:
- $$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$
(3) The first answer is correct:
- For phase-synchronous demodulation $(Δϕ_T = 0)$, the signals before the low-pass filters according to subtask (2) are obtained as:
- $$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
- $$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
- Thus, after eliminating the respective $45\ \rm kHz$ components, we get $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$.
(4) Analogously to subtask (3) it now holds that:
- $$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
- $$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
- The sink signals $v_1(t)$ and $v_2(t)$ in this constellation exhibit delays and thus phase distortions compared with $q_1(t)$ and $q_2(t)$.
- These belong to the class of linear distortions ⇒ Answer 2.
(5) In general, it holds for the received signal:
- $$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Multiplication by the receiver-side carrier signals $z_{1,\hspace{0.05cm}{\rm E}}(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ and band-limiting leads to the signals
- $$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
- $$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$
From this it can be seen:
- With a phase offset of $Δϕ_{\rm T} = 30^\circ$, the sink signal $v_1(t)$ includes not only the signal $q_1(t)$ attenuated by about $\cos(30^\circ) = 0.866$,
but also the frequency $f_2$ is contained in $q_2(t)$. - This is weighted by the factor $\sin(30^\circ) = 0.5$.
- Thus, nonlinear distortions are present ⇒ Answer 3.