Difference between revisions of "Aufgaben:Exercise 2.13: Quadrature Amplitude Modulation"
m |
|||
(36 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation Methods/Further AM Variants |
}} | }} | ||
− | [[File: | + | [[File:EN_Mod_A_2_11.png|right|frame|QAM model under consideration]] |
− | + | The "quadrature amplitude modulation" $\rm (QAM)$ explained by the diagram allows the transmission of two source signals $q_1(t)$ and $q_2(t)$ over the same channel | |
− | + | *under certain boundary conditions, | |
− | $$q_2(t) | + | *which are to be determined in this exercise. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | In this exercise, with $A_1 = A_2 = 2\ \rm V$: | |
+ | :$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$ | ||
+ | :$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$ | ||
+ | For $ω_{\rm T} = 2π · 25\ \rm kHz$, the four carrier signals shown in the diagram are: | ||
+ | :$$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$ | ||
+ | :$$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$ | ||
+ | :$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$ | ||
+ | :$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$ | ||
− | + | Both lowpass filters $\rm LP_1$ and $\rm LP_2$ with input signals $b_1(t)$ resp. $b_2(t)$ , remove all frequency components $|f| > f_{\rm T}$. | |
− | $ | ||
− | $$ | ||
− | |||
− | === | + | |
+ | |||
+ | |||
+ | |||
+ | Hints: | ||
+ | *This exercise belongs to the chapter [[Modulation_Methods/Further_AM_Variants|Further AM Variants]]. | ||
+ | *Particular reference is made to the page [[Modulation_Methods/Further_AM_Variants#Quadrature_Amplitude_Modulation_.28QAM.29|Quadrature Amplitude Modulation (QAM)]]. | ||
+ | *It is worth noting that the carrier signals $z_2(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ are applied with positive signs here. | ||
+ | *Often – as in the theory section – these carrier signals are given as "minus-sine". | ||
+ | *The following trigonometric transformations are given: | ||
+ | :$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$ | ||
+ | :$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$ | ||
+ | :$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the transmitted signal $s(t)$ in the case that $f_1 ≠ f_2$. Which of the following statements apply? |
− | |type=" | + | |type="()"} |
− | - $s(t)$ | + | - $s(t)$ is composed of two cosine and two sine oscillations. |
− | + $s(t)$ | + | + $s(t)$ is composed of four cosine oscillations. |
− | - $s(t)$ | + | - $s(t)$ is composed of four sine oscillations. |
− | { | + | {What is $s(t)$ with $f_1 = f_2 = 5 \ \rm kHz$? What signal value arises for $t = 50 \ \rm µ s$ ? |
|type="{}"} | |type="{}"} | ||
− | $s(t = 50 | + | $s(t = 50 \ \rm µ s) \ = \ $ { 2 3% } $\ \rm V$ |
− | { | + | {Calculate the sink signals $v_1(t)$ and $v_2(t)$ for $f_1 = f_2$ and $Δϕ_{\rm T} = 0$ (no phase offset). Which statements are true? |
− | |type=" | + | |type="()"} |
− | + | + | + $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$ both hold. |
− | - | + | - Linear distortions occur. |
− | - | + | - Nonlinear distortions occur. |
− | { | + | {Calculate the sink signals $v_1(t)$ and $v_2(t)$ for $f_1 = f_2$ and a phase offset $Δϕ_{\rm T} = 30^\circ$. Which statements are true? |
− | |type=" | + | |type="()"} |
− | - | + | - $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$ both hold. |
− | + | + | + Linear distortions occur. |
− | - | + | - Nonlinear distortions occur. |
− | { | + | {Which of the following statements apply when $f_1 ≠ f_2$ and $Δϕ_{\rm T} ≠ 0$ (with an arbitrary phase offset)? |
− | |type=" | + | |type="()"} |
− | - | + | - $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$ both hold. |
− | - | + | - Linear distortions occur. |
− | + | + | + Nonlinear distortions occur. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' With the given trigonometric transformations we get: |
− | '''2 | + | :$$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$ |
− | '''3 | + | :$$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + |
− | ''' | + | \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$ |
− | ''' | + | *The <u>second answer</u> is correct. |
− | ''' | + | |
− | ''' | + | |
+ | |||
+ | '''(2)''' With $A_1 = A_2 = 2 \ \rm V$ and $f_1 = f_2 = 5\ \rm kHz$, the first and third cosine oscillations constructively overlap and the other two cancel completely. | ||
+ | *Thus, the following simple result is obtained: | ||
+ | :$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | '''(3)''' The <u>first answer</u> is correct: | ||
+ | *For phase-synchronous demodulation $(Δϕ_T = 0)$, the signals before the low-pass filters according to subtask '''(2)''' are obtained as: | ||
+ | :$$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$ | ||
+ | :$$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$ | ||
+ | *Thus, after eliminating the respective $45\ \rm kHz$ components, we get $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$. | ||
+ | |||
+ | |||
+ | |||
+ | '''(4)''' Analogously to subtask '''(3)''' it now holds that: | ||
+ | :$$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= | ||
+ | 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$ | ||
+ | :$$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= | ||
+ | 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$ | ||
+ | *The sink signals $v_1(t)$ and $v_2(t)$ in this constellation exhibit delays and thus phase distortions compared with $q_1(t)$ and $q_2(t)$. | ||
+ | *These belong to the class of linear distortions ⇒ <u>Answer 2</u>. | ||
+ | |||
+ | |||
+ | |||
+ | '''(5)''' In general, it holds for the received signal: | ||
+ | :$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | ||
+ | Multiplication by the receiver-side carrier signals $z_{1,\hspace{0.05cm}{\rm E}}(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ and band-limiting leads to the signals | ||
+ | :$$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$ | ||
+ | :$$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$ | ||
+ | From this it can be seen: | ||
+ | *With a phase offset of $Δϕ_{\rm T} = 30^\circ$, the sink signal $v_1(t)$ includes not only the signal $q_1(t)$ attenuated by about $\cos(30^\circ) = 0.866$, <br>but also the frequency $f_2$ is contained in $q_2(t)$. | ||
+ | *This is weighted by the factor $\sin(30^\circ) = 0.5$. | ||
+ | *Thus, nonlinear distortions are present ⇒ <u>Answer 3</u>. | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^2.5 Other AM Variants^]] |
Latest revision as of 15:27, 9 April 2022
The "quadrature amplitude modulation" $\rm (QAM)$ explained by the diagram allows the transmission of two source signals $q_1(t)$ and $q_2(t)$ over the same channel
- under certain boundary conditions,
- which are to be determined in this exercise.
In this exercise, with $A_1 = A_2 = 2\ \rm V$:
- $$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
- $$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$
For $ω_{\rm T} = 2π · 25\ \rm kHz$, the four carrier signals shown in the diagram are:
- $$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$
- $$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$
- $$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
- $$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$
Both lowpass filters $\rm LP_1$ and $\rm LP_2$ with input signals $b_1(t)$ resp. $b_2(t)$ , remove all frequency components $|f| > f_{\rm T}$.
Hints:
- This exercise belongs to the chapter Further AM Variants.
- Particular reference is made to the page Quadrature Amplitude Modulation (QAM).
- It is worth noting that the carrier signals $z_2(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ are applied with positive signs here.
- Often – as in the theory section – these carrier signals are given as "minus-sine".
- The following trigonometric transformations are given:
- $$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Questions
Solution
- $$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$
- $$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
- The second answer is correct.
(2) With $A_1 = A_2 = 2 \ \rm V$ and $f_1 = f_2 = 5\ \rm kHz$, the first and third cosine oscillations constructively overlap and the other two cancel completely.
- Thus, the following simple result is obtained:
- $$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$
(3) The first answer is correct:
- For phase-synchronous demodulation $(Δϕ_T = 0)$, the signals before the low-pass filters according to subtask (2) are obtained as:
- $$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
- $$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
- Thus, after eliminating the respective $45\ \rm kHz$ components, we get $v_1(t) = q_1(t)$ and $v_2(t) = q_2(t)$.
(4) Analogously to subtask (3) it now holds that:
- $$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
- $$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
- The sink signals $v_1(t)$ and $v_2(t)$ in this constellation exhibit delays and thus phase distortions compared with $q_1(t)$ and $q_2(t)$.
- These belong to the class of linear distortions ⇒ Answer 2.
(5) In general, it holds for the received signal:
- $$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Multiplication by the receiver-side carrier signals $z_{1,\hspace{0.05cm}{\rm E}}(t)$ and $z_{2,\hspace{0.05cm}{\rm E}}(t)$ and band-limiting leads to the signals
- $$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
- $$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$
From this it can be seen:
- With a phase offset of $Δϕ_{\rm T} = 30^\circ$, the sink signal $v_1(t)$ includes not only the signal $q_1(t)$ attenuated by about $\cos(30^\circ) = 0.866$,
but also the frequency $f_2$ is contained in $q_2(t)$. - This is weighted by the factor $\sin(30^\circ) = 0.5$.
- Thus, nonlinear distortions are present ⇒ Answer 3.