Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.8: Different Error Probabilities"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1703__Mod_A_4_7.png|right|frame|AWGN error probability curves of ASK, BPSK and DPSK]]
+
[[File:P_ID1703__Mod_A_4_7.png|right|frame|AWGN error probability curves of <br>ASK, BPSK and DPSK]]
Here, the bit error probabilities &nbsp;pB&nbsp; of the digital modulation methods ASK and BPSK are given without further derivation.&nbsp; For example, with the so-called Q function, one obtains
+
Here,&nbsp; the bit error probabilities &nbsp;pB&nbsp; of the digital modulation methods ASK and BPSK are given without further derivation.&nbsp; For example,&nbsp; with the so-called Q function,  
:Q(x)=12π+xeu2/2du
+
:$$ {\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\cdot \int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u,$$
for the AWGN channel&nbsp; –&nbsp; characterized by the quotient&nbsp;  EB/N0&nbsp; –&nbsp; and further optimal conditions&nbsp; (for example coherent demodulation)
+
one obtains for the AWGN channel&nbsp; –&nbsp; characterized by the quotient&nbsp;  EB/N0&nbsp; –&nbsp; and further optimal conditions&nbsp; (for example coherent demodulation)
* for &nbsp;''Amplitude Shift Keying''&nbsp; (ASK):
+
* for &nbsp;"Amplitude Shift Keying"&nbsp; (ASK):
 
:pB=Q(EB/N0),
 
:pB=Q(EB/N0),
* for &nbsp;''Binary Phase Shift Keying''&nbsp; (BPSK):
+
* for &nbsp;"Binary Phase Shift Keying"&nbsp; (BPSK):
 
:pB=Q(2EB/N0).
 
:pB=Q(2EB/N0).
 
+
* for &nbsp;"Differential Phase Shift Keying"&nbsp;  (DPSK)&nbsp; with differential coherent demodulation is:
The equation for &nbsp;''Differential Phase Shift Keying''&nbsp;  (DPSK)&nbsp; with differential coherent demodulation is:
 
 
:pB=1/2eEB/N0.
 
:pB=1/2eEB/N0.
However, ASK could also be demodulated non-coherently.&nbsp; In this case the following would apply:
+
:However,&nbsp; ASK could also be demodulated non-coherently.&nbsp; In this case the following would apply:
 
:pB=1/2eEB/(2N0).
 
:pB=1/2eEB/(2N0).
The first three error probabilities are shown in the diagram.&nbsp; For example, for &nbsp;10·lgEB/N0=10 dB&nbsp;  corresponding to the exact functions, one obtains:
+
The first three error probabilities are shown in the diagram.&nbsp; For example,&nbsp; for &nbsp;10·lgEB/N0=10 dB&nbsp;  corresponding to the exact functions,&nbsp; one obtains:
 
:pB=7.83104(ASK),pB=3.87106(BPSK),
 
:pB=7.83104(ASK),pB=3.87106(BPSK),
For BPSK to reach or fall below the bit error probability &nbsp;p_{\rm B} = 10^{–5}&nbsp; must be &nbsp;10 · \lg E_{\rm B}/N_0 \ge 9.6 \ \rm dB.&nbsp;
+
For BPSK to reach or fall below the bit error probability &nbsp;p_{\rm B} = 10^{–5} &nbsp; &rArr; &nbsp; 10 · \lg E_{\rm B}/N_0 \ge 9.6 \ \rm dB.&nbsp;
 
 
 
 
 
 
  
  
Line 27: Line 23:
  
  
''Notes:''
+
Notes:  
 
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Linear_Digital_Modulation|Linear Digital Modulation]].
 
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Linear_Digital_Modulation|Linear Digital Modulation]].
 
*Reference is made in particular to the section&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|Error probabilities - a brief overview]].
 
*Reference is made in particular to the section&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|Error probabilities - a brief overview]].
*The derivations can be found in the chapter &nbsp;[[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Linear Digital Modulation - Coherent Demodulation]]&nbsp; of the book "Digital Signal Transmission".
+
*The derivations can be found in the chapter &nbsp;[[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Linear Digital Modulation - Coherent Demodulation]]&nbsp; of the book "Digital Signal Transmission".  
+
*For numerical evaluations,&nbsp; you can use the following upper bound:
*For the numerical evaluations, you can use the following upper bound:
 
 
: {\rm Q}_{\rm S} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi} \cdot x}\cdot \rm e^{\it -x^{\rm 2}/\rm 2} \ge {\rm Q} (x)\hspace{0.05cm}.
 
: {\rm Q}_{\rm S} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi} \cdot x}\cdot \rm e^{\it -x^{\rm 2}/\rm 2} \ge {\rm Q} (x)\hspace{0.05cm}.
  
Line 40: Line 35:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the &nbsp;<u>ASK</u> bit error probability for &nbsp;10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB&nbsp; using the upper bound&nbsp; {\rm Q_S}(x).
+
{Calculate the &nbsp;'''ASK''' bit error probability for &nbsp;10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB&nbsp; using the upper bound&nbsp; {\rm Q_S}(x).
 
|type="{}"}
 
|type="{}"}
 
p_{\rm B} \ = \   { 85 3% } \ \cdot 10^{-5}
 
p_{\rm B} \ = \   { 85 3% } \ \cdot 10^{-5}
  
  
{Calculate the &nbsp;<u>BPSK</u> bit error probability for &nbsp;10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB&nbsp; using the upper bound&nbsp; {\rm Q_S}(x).
+
{Calculate the &nbsp;'''BPSK''' bit error probability for &nbsp;10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB&nbsp; using the upper bound&nbsp; {\rm Q_S}(x).
 
|type="{}"}
 
|type="{}"}
 
p_{\rm B} \ = \ { 0.405 3% } \ \cdot 10^{-5}
 
p_{\rm B} \ = \ { 0.405 3% } \ \cdot 10^{-5}
  
{Specify the minimum value for &nbsp;E_{\rm B}/N_0&nbsp; (in dB) for &nbsp;<u>ASK</u>&nbsp; to achieve the bit error probability &nbsp;p_{\rm B} = 10^{–5}.&nbsp;  
+
{Specify the minimum value for &nbsp;E_{\rm B}/N_0&nbsp; (in dB) for &nbsp;'''ASK'''&nbsp; to achieve the bit error probability &nbsp;p_{\rm B} = 10^{–5}.&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
10 · \lg E_{\rm B}/N_0 \ = \ { 12.6 3% } \ \rm dB  
 
10 · \lg E_{\rm B}/N_0 \ = \ { 12.6 3% } \ \rm dB  
  
{Calculate the &nbsp;<u>DPSK</u> bit error probability for &nbsp;10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB.
+
{Calculate the &nbsp;'''DPSK''' bit error probability for &nbsp;10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB.
 
|type="{}"}
 
|type="{}"}
 
p_{\rm B} \ = \ { 2.27 3% } \ \cdot 10^{-5}
 
p_{\rm B} \ = \ { 2.27 3% } \ \cdot 10^{-5}
  
{For &nbsp;<u>DPSK</u>,&nbsp; specify the minimum value for &nbsp;E_{\rm B}/N_0&nbsp; (in dB) to achieve the bit error probability &nbsp;p_{\rm B} = 10^{–5}.&nbsp;  
+
{For &nbsp;'''DPSK''',&nbsp; specify the minimum value for &nbsp;E_{\rm B}/N_0&nbsp; (in dB) to achieve the bit error probability &nbsp;p_{\rm B} = 10^{–5}.&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
10 · \lg E_{\rm B}/N_0 \ = \ { 10.4 3% } \ \rm dB  
 
10 · \lg E_{\rm B}/N_0 \ = \ { 10.4 3% } \ \rm dB  
  
{On the other hand, what &nbsp;E_{\rm B}/N_0&nbsp; (in dB)  is needed for &nbsp;<u>incoherent ASK</u> to achieve &nbsp;p_{\rm B} = 10^{–5}?&nbsp;
+
{On the other hand,&nbsp; what &nbsp;E_{\rm B}/N_0&nbsp; (in dB)&nbsp; is needed for &nbsp;'''incoherent ASK'''&nbsp; to achieve &nbsp;p_{\rm B} = 10^{–5}?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
10 · \lg E_{\rm B}/N_0 \ = \ { 13.4 3% }  \ \rm dB
 
10 · \lg E_{\rm B}/N_0 \ = \ { 13.4 3% }  \ \rm dB

Revision as of 15:28, 15 April 2022

AWGN error probability curves of
ASK, BPSK and DPSK

Here,  the bit error probabilities  p_{\rm B}  of the digital modulation methods ASK and BPSK are given without further derivation.  For example,  with the so-called Q function,

{\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\cdot \int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u,

one obtains for the AWGN channel  –  characterized by the quotient  E_{\rm B}/N_0  –  and further optimal conditions  (for example coherent demodulation)

  • for  "Amplitude Shift Keying"  \rm (ASK):
p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \hspace{0.05cm},
  • for  "Binary Phase Shift Keying"  \rm (BPSK):
p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \hspace{0.05cm}.
  • for  "Differential Phase Shift Keying"  \rm (DPSK)  with differential coherent demodulation is:
p_{\rm B} ={1}/{2} \cdot {\rm e}^{- E_{\rm B}/{N_0 }}\hspace{0.05cm}.
However,  ASK could also be demodulated non-coherently.  In this case the following would apply:
p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/(2{N_0 })}\hspace{0.05cm}.

The first three error probabilities are shown in the diagram.  For example,  for  10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB  corresponding to the exact functions,  one obtains:

p_{\rm B} = 7.83 \cdot 10^{-4}\,\,{\rm (ASK)}\hspace{0.05cm},\hspace{0.3cm} p_{\rm B} = 3.87 \cdot 10^{-6}\,\,{\rm (BPSK)}\hspace{0.05cm},

For BPSK to reach or fall below the bit error probability  p_{\rm B} = 10^{–5}   ⇒   10 · \lg E_{\rm B}/N_0 \ge 9.6 \ \rm dB



Notes:

{\rm Q}_{\rm S} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi} \cdot x}\cdot \rm e^{\it -x^{\rm 2}/\rm 2} \ge {\rm Q} (x)\hspace{0.05cm}.


Questions

1

Calculate the  ASK bit error probability for  10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB  using the upper bound  {\rm Q_S}(x).

p_{\rm B} \ = \

\ \cdot 10^{-5}

2

Calculate the  BPSK bit error probability for  10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB  using the upper bound  {\rm Q_S}(x).

p_{\rm B} \ = \

\ \cdot 10^{-5}

3

Specify the minimum value for  E_{\rm B}/N_0  (in dB) for  ASK  to achieve the bit error probability  p_{\rm B} = 10^{–5}

10 · \lg E_{\rm B}/N_0 \ = \

\ \rm dB

4

Calculate the  DPSK bit error probability for  10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB.

p_{\rm B} \ = \

\ \cdot 10^{-5}

5

For  DPSK,  specify the minimum value for  E_{\rm B}/N_0  (in dB) to achieve the bit error probability  p_{\rm B} = 10^{–5}

10 · \lg E_{\rm B}/N_0 \ = \

\ \rm dB

6

On the other hand,  what  E_{\rm B}/N_0  (in dB)  is needed for  incoherent ASK  to achieve  p_{\rm B} = 10^{–5}

10 · \lg E_{\rm B}/N_0 \ = \

\ \rm dB


Solution

(1)  From  10 · \lg E_{\rm B}/N_0 = 10 \ \rm dB  follows  E_{\rm B}/N_0 = 10   and thus

p_{\rm B} = {\rm Q}\left ( \sqrt{10} \right ) \approx {\rm Q_{\rm S}}\left ( \sqrt{10} \right )= \frac{\rm 1}{\sqrt{\rm 20\pi} }\cdot \rm e^{-5 }\hspace{0.15cm}\underline {= 85 \cdot 10^{-5}}\hspace{0.05cm}.
  • The actual value according to the specification sheet is  78.3 · 10^{–5}
  • Thus, the given equation  {\rm Q_S}(x)  is actually an upper bound for  {\rm Q}(x).
  • The relative error of using  {\rm Q_S}(x)  instead of  {\rm Q}(x)  in this case is less than  10\%.


(2)  For BPSK, the corresponding equation is:

p_{\rm B} = {\rm Q}\left ( \sqrt{20} \right ) \approx {\rm Q_{\rm S}}\left ( \sqrt{20} \right )= \frac{\rm 1}{\sqrt{\rm 40\pi} }\cdot \rm e^{-10 }\hspace{0.15cm}\underline {= 0.405 \cdot 10^{-5}}\hspace{0.05cm}.
  • Now, by using  {\rm Q_S}(x),  the relative error is only  5 \%.
  • In general:   The smaller the error probability, the better the approximation  {\rm Q}(x) ≈ {\rm Q_S}(x).


(3)  For BPSK, according to the specification, a (logarithmized) value of  9.6\ \rm dB  is required for this.

  • For ASK, the logarithmized value must be increased by about  3\ \rm dB    ⇒   10 · \lg E_{\rm B}/N_0 \hspace{0.15cm}\underline {= 12.6 \ \rm dB}.


(4)  According to the given DPSK equation, with  E_{\rm B}/N_0 = 10 :

p_{\rm B} = {\rm 1}/{2 }\cdot \rm e^{-10 }\hspace{0.15cm}\underline {\approx 2.27 \cdot 10^{-5}}\hspace{0.05cm}.
  • As can already be seen from the diagram on the specification page, DPSK with differential coherent demodulation lies between binary phase modulation  (BPSK)  and binary amplitude modulation  (ASK) when coherent demodulation is provided for both.


(5)  From the inverse function of the given equation, we obtain:

\frac{E_{\rm B}} {N_{\rm 0}}= {\rm ln}\hspace{0.1cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\frac{E_{\rm B}} {N_{\rm 0}}\hspace{0.15cm}\underline {\approx 10.4\,\,{\rm dB}}\hspace{0.05cm}.


(6)  The incoherent ASK is again  3\ \rm dB  worse than the differential coherent DPSK according to the equations given.  From this it follows for the sought dB value:  

10 · \lg E_{\rm B}/N_0 \hspace{0.15cm}\underline {≈ 13.4 \ \rm dB}.