Difference between revisions of "Aufgaben:Exercise 4.8Z: BPSK Error Probability"
m (Guenter verschob die Seite 4.7Z BPSK–Fehlerwahrscheinlichkeit nach 4.8Z BPSK–Fehlerwahrscheinlichkeit) |
|||
(18 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation_Methods/Linear_Digital_Modulation |
}} | }} | ||
− | [[File:P_ID1681__Dig_Z_4_1.png|right|]] | + | [[File:P_ID1681__Dig_Z_4_1.png|right|frame|Table of the Complementary Gaussian Error Function ${\rm Q}(x)$]] |
− | + | We assume the optimal baseband transmission system for binary signals with | |
− | + | * bipolar amplitude coefficients $a_ν ∈ \{-1, +1\}$, | |
− | + | * rectangular transmitted signal $s(t)$ with signal values $±s_0$ and bit duration $T_{\rm B}$, | |
− | + | * AWGN noise with the (one-sided) noise power density $N_0$, | |
− | + | * receiver filter according to the matched filter principle, | |
− | + | * decision with optimal threshold value $E = 0$. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | If nothing else is specified, you should assume the following numerical values: | |
− | $$ | + | :$$s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$ |
− | + | Using the noise rms value $σ_d$ at the decision and the complementary Gaussian error function ${\rm Q}(x)$, the bit error probability of this baseband $\rm (BB)$ system is ⇒ see table: | |
− | $$ p_{\rm | + | :$$ p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/(2 \cdot T_{\rm B}}).$$ |
− | + | This bit error probability can also be expressed in the form | |
+ | :$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$ | ||
+ | where $E_{\rm B}$ indicates the "signal energy per bit". | ||
+ | The bit error probability of a comparable transmission system with "Binary Phase Shift Keying" $\rm (BPSK)$ is: | ||
+ | :$$ p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$ | ||
− | === | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | Notes: | ||
+ | *The exercise belongs to the chapter [[Modulation_Methods/Linear_Digital_Modulation|"Linear Digital Modulation"]]. | ||
+ | *Reference is made in particular to the section [[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|"Error probabilities - a brief overview"]]. | ||
+ | *The derivations can be found in the chapter [[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]] of the book "Digital Signal Transmission". | ||
+ | *The specification of a power in $\rm V^2$ or an energy in $\rm V^2 s$ means a conversion to the reference resistance $1 \ \rm \Omega$. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Let $s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$ What is the error probability $p_{\rm BB}$ of the baseband system? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $p_{\rm BB} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4}$ |
− | { | + | {For this parameter set, what is the energy per bit ⇒ $E_{\rm B}$ for the baseband system? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $E_{\rm B} \ = \ $ { 1.6 3% } $\ \cdot 10^{-8} \ \rm V^2 s$ |
− | { | + | {What is the error probability at half the transmitted amplitude ⇒ $s_0 = 2\,{\rm V}$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $p_{\rm BB} \ = \ $ { 227 3% } $\ \cdot 10^{-4}$ |
− | { | + | {Give the error probability of the BPSK depending on the quotient $E_{\rm B}/N_0$. Which result is correct? |
− | |type=" | + | |type="()"} |
− | - $p_{BPSK} = Q[( | + | - $p_{\rm BPSK} = {\rm Q}\big[(E_{\rm B}/N_0)^{1/2}\big],$ |
− | + $p_{BPSK} = Q[( | + | + $p_{\rm BPSK} = {\rm Q}\big[(2E_{\rm B}/N_0)^{1/2}\big],$ |
− | - $p_{BPSK} = Q[( | + | - $p_{\rm BPSK} = {\rm Q}\big[(4E_{\rm B}/N_0)^{1/2}\big].$ |
− | { | + | {What are the error probabilities for BPSK with $E_{\rm B}/N_0 = 8$ and $E_{\rm B}/N_0 = 2$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $E_{\rm B}/N_0 = 8\text{:} \ \ \ \ p_{\rm BPSK} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4}$ |
− | $ | + | $E_{\rm B}/N_0 = 2\text{:} \ \ \ \ p_{\rm BPSK} \ = \ $ { 227 3% } $\ \cdot 10^{-4}$ |
Line 55: | Line 69: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' The noise rms value here is given by |
− | $$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}$$ | + | :$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V} |
− | $$: \ | + | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}}.$$ |
+ | |||
+ | |||
+ | '''(2)''' For the baseband system: | ||
+ | :$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.15cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$ | ||
+ | *Of course, the second equation gives the exact same error probability | ||
+ | :$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$ | ||
+ | |||
+ | |||
+ | '''(3)''' When the transmitted amplitude is half ⇒ $s_0 = 2\,{\rm V}$, the energy per bit decreases to one-fourth and the following equations apply: | ||
+ | :$$ p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )= {\rm Q}(2)= 227 \cdot 10^{-4},$$ | ||
+ | :$$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$ | ||
− | |||
− | |||
− | |||
− | |||
− | ''' | + | '''(4)''' <u>Answer 2</u> is correct: |
− | $ | + | *Considering the energy $E_{\rm B} = s_0^2 · T_{\rm B}/2$ we obtain |
− | + | :$$ p_{\rm BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }}\hspace{0.1cm}\right ).$$ | |
+ | *Thus, the same result is obtained as for the optimal baseband transmission system. | ||
− | |||
− | |||
− | |||
− | '''5 | + | '''(5)''' Exactly the same results are obtained as for the baseband transmission in questions '''(1)''' and '''(3)''': |
− | $$ | + | :$${ E_{\rm B}}/{N_0 }= 8: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}},$$ |
− | $$ | + | :$$ { E_{\rm B}}/{N_0 }= 2: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$ |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 83: | Line 102: | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^4.2 Linear Digital Modulation^]] |
Latest revision as of 17:26, 15 April 2022
We assume the optimal baseband transmission system for binary signals with
- bipolar amplitude coefficients $a_ν ∈ \{-1, +1\}$,
- rectangular transmitted signal $s(t)$ with signal values $±s_0$ and bit duration $T_{\rm B}$,
- AWGN noise with the (one-sided) noise power density $N_0$,
- receiver filter according to the matched filter principle,
- decision with optimal threshold value $E = 0$.
If nothing else is specified, you should assume the following numerical values:
- $$s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
Using the noise rms value $σ_d$ at the decision and the complementary Gaussian error function ${\rm Q}(x)$, the bit error probability of this baseband $\rm (BB)$ system is ⇒ see table:
- $$ p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/(2 \cdot T_{\rm B}}).$$
This bit error probability can also be expressed in the form
- $$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
where $E_{\rm B}$ indicates the "signal energy per bit".
The bit error probability of a comparable transmission system with "Binary Phase Shift Keying" $\rm (BPSK)$ is:
- $$ p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
Notes:
- The exercise belongs to the chapter "Linear Digital Modulation".
- Reference is made in particular to the section "Error probabilities - a brief overview".
- The derivations can be found in the chapter "Linear Digital Modulation - Coherent Demodulation" of the book "Digital Signal Transmission".
- The specification of a power in $\rm V^2$ or an energy in $\rm V^2 s$ means a conversion to the reference resistance $1 \ \rm \Omega$.
Questions
Solution
- $$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}}.$$
(2) For the baseband system:
- $$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.15cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
- Of course, the second equation gives the exact same error probability
- $$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
(3) When the transmitted amplitude is half ⇒ $s_0 = 2\,{\rm V}$, the energy per bit decreases to one-fourth and the following equations apply:
- $$ p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )= {\rm Q}(2)= 227 \cdot 10^{-4},$$
- $$ p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$
(4) Answer 2 is correct:
- Considering the energy $E_{\rm B} = s_0^2 · T_{\rm B}/2$ we obtain
- $$ p_{\rm BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }}\hspace{0.1cm}\right ).$$
- Thus, the same result is obtained as for the optimal baseband transmission system.
(5) Exactly the same results are obtained as for the baseband transmission in questions (1) and (3):
- $${ E_{\rm B}}/{N_0 }= 8: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4}},$$
- $$ { E_{\rm B}}/{N_0 }= 2: \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2)\hspace{0.15cm}\underline {= 227 \cdot 10^{-4}}.$$